ETV6::RUNX1 Acute Lymphoblastic Leukemia: how much therapy is needed for cure?
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, metaanalýza
PubMed
38844578
PubMed Central
PMC11216990
DOI
10.1038/s41375-024-02287-7
PII: 10.1038/s41375-024-02287-7
Knihovny.cz E-zdroje
- MeSH
- akutní lymfatická leukemie * genetika farmakoterapie mortalita terapie MeSH
- fúzní onkogenní proteiny * genetika MeSH
- lidé MeSH
- míra přežití MeSH
- protein ETS, translokační varianta 6 * MeSH
- protein PEBP2A2 * genetika MeSH
- protokoly protinádorové kombinované chemoterapie terapeutické užití MeSH
- protoonkogenní proteiny c-ets * genetika MeSH
- represorové proteiny * genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- metaanalýza MeSH
- Názvy látek
- fúzní onkogenní proteiny * MeSH
- protein ETS, translokační varianta 6 * MeSH
- protein PEBP2A2 * MeSH
- protoonkogenní proteiny c-ets * MeSH
- represorové proteiny * MeSH
- RUNX1 protein, human MeSH Prohlížeč
- TEL-AML1 fusion protein MeSH Prohlížeč
Recent trials show 5-year survival rates >95% for ETV6::RUNX1 Acute Lymphoblastic Leukemia (ALL). Since treatment has many side effects, an overview of cumulative drug doses and intensities between eight international trials is presented to characterize therapy needed for cure. A meta-analysis was performed as a comprehensive summary of survival outcomes at 5 and 10 years. For drug dose comparison in non-high risk trial arms, risk group distribution was applied to split the trials into two groups: trial group A with ~70% (range: 63.5-75%) of patients in low risk (LR) (CCLSG ALL2004, CoALL 07-03, NOPHO ALL2008, UKALL2003) and trial group B with ~45% (range: 38.7-52.7%) in LR (AIEOP-BFM ALL 2000, ALL-IC BFM ALL 2002, DCOG ALL10, JACLS ALL-02). Meta-analysis did not show evidence of heterogeneity between studies in trial group A LR and medium risk (MR) despite differences in treatment intensity. Statistical heterogeneity was present in trial group B LR and MR. Trials using higher cumulative dose and intensity of asparaginase and pulses of glucocorticoids and vincristine showed better 5-year event-free survival but similar overall survival. Based on similar outcomes between trials despite differences in therapy intensity, future trials should investigate, to what extent de-escalation is feasible for ETV6::RUNX1 ALL.
Associazione Italiana di Ematologia e Oncologia Pediatrica Bologna Italy
Berlin Frankfurt Münster Study Group Frankfurt Germany
Childhood Acute Lymphoblastic Leukemia study group Hamburg Germany
Children's Cancer and Leukemia Study Group Nagoya Japan
Department of Haematology Great Ormond Street Hospital London UK
Department of Paediatric Haematology and Oncology Hannover Medical School 30625 Hannover Germany
Department of Paediatric Oncology Karolinska University Hospital Stockholm Sweden
Department of Paediatrics University Medical Centre Schleswig Holstein Kiel Germany
Department of Pediatrics University of Milano Bicocca Monza Italy
Dutch Childhood Oncology Group Utrecht The Netherlands
Japan Childhood Leukemia Study Group Nagoya Japan
Mathematical Institute Leiden University Leiden The Netherlands
Nordic Society of Paediatric Haematology and Oncology Nordic and Baltic Countries Uppsala Sweden
Nordic Society of Paediatric Haematology and Oncology Nordic Countries Uppsala Sweden
Princess Máxima Center for Pediatric Oncology Utrecht The Netherlands
United Kingdom Acute Lymphoblastic Leukaemia study group Liverpool UK
Zobrazit více v PubMed
Pui CH, Yang JJ, Hunger SP, Pieters R, Schrappe M, Biondi A, et al. Childhood acute lymphoblastic leukemia: progress through collaboration. J Clin Oncol. 2015;33:2938–48. PubMed PMC
Vrooman LM, Silverman LB. Treatment of childhood acute lymphoblastic leukemia: prognostic factors and clinical advances. Curr Hematol Malig Rep. 2016;11:385–94. PubMed
Mullighan CG, Goorha S, Radtke I, Miller CB, Coustan-Smith E, Dalton JD, et al. Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia. Nature. 2007;446:758–64. PubMed
Möricke A, Zimmermann M, Valsecchi MG, Stanulla M, Biondi A, Mann G, et al. Dexamethasone vs prednisone in induction treatment of pediatric ALL: results of the randomized trial AIEOP-BFM ALL 2000. Blood. 2016;127:2101–12. PubMed
Schramm F, zur Stadt U, Zimmermann M, Jorch N, Pekrun A, Borkhardt A, et al. Results of CoALL 07-03 study childhood ALL based on combined risk assessment by in vivo and in vitro pharmacosensitivity. Blood Adv. 2019;3:3688–99. PubMed PMC
Pieters R, De Groot-Kruseman H, Van Der Velden V, Fiocco M, Van Den Berg H, De Bont E, et al. Successful therapy reduction and intensification for childhood acute lymphoblastic leukemia based on minimal residual disease monitoring: Study ALL10 from the Dutch Childhood Oncology Group. J Clin Oncol. 2016;34:2591–2601. PubMed
Maxwell RR, Cole PD. Pharmacogenetic predictors of treatment-related toxicity among children with acute lymphoblastic leukemia. Curr Hematol Malig Rep. 2017;12:176–86. PubMed
Robison LL. Late effects of acute lymphoblastic leukemia therapy in patients diagnosed at 0-20 years of age. Hematol Am Soc Hematol Am Soc Hematol Educ Program. 2011;2011:238–42. PubMed
Armstrong GT, Chen Y, Yasui Y, Leisenring W, Gibson TM, Mertens AC, et al. Reduction in late mortality among 5-year survivors of childhood cancer. N Engl J Med. 2016;374:833–42. PubMed PMC
Krull KR, Hardy KK, Kahalley LS, Schuitema I, Kesler SR. Neurocognitive outcomes and interventions in long-term survivors of childhood cancer. J Clin Oncol. 2018;36:2181–9. PubMed PMC
McGowan JV, Chung R, Maulik A, Piotrowska I, Walker JM, Yellon DM. Anthracycline chemotherapy and cardiotoxicity. Cardiovasc Drugs Ther. 2017;31:63–75. PubMed PMC
Sakamoto K, Imamura T, Kihira K, Suzuki K, Ishida H, Morita H, et al. Low incidence of osteonecrosis in childhood acute lymphoblastic leukemia treated with ALL-97 and ALL-02 study of Japan association of childhood leukemia study group. J Clin Oncol. 2018;36:900–7. PubMed
Toft N, Birgens H, Abrahamsson J, Griškevičius L, Hallböök H, Heyman M, et al. Results of NOPHO ALL2008 treatment for patients aged 1–45 years with acute lymphoblastic leukemia. Leukemia. 2018;32:606–15. PubMed
Vora A, Goulden N, Wade R, Mitchell C, Hancock J, Hough R, et al. Treatment reduction for children and young adults with low-risk acute lymphoblastic leukaemia defined by minimal residual disease (UKALL 2003): a randomised controlled trial. Lancet Oncol. 2013;14:199–209. PubMed
Stary J, Zimmermann M, Campbell M, Castillo L, Dibar E, Donska S, et al. Intensive chemotherapy for childhood acute lymphoblastic leukemia: results of the randomized intercontinental trial ALL IC-BFM 2002. J Clin Oncol. 2014;32:174–84. PubMed
Hyakuna N, Shimomura Y, Watanabe A, Taga T, Kikuta A, Matsushita T, et al. Assessment of corticosteroid-induced osteonecrosis in children undergoing chemotherapy for acute lymphoblastic leukemia: a report from the Japanese childhood cancer and leukemia study group. J Pediatr Hematol Oncol. 2014;36:22–29. PubMed PMC
Gaynon PS, Lustig RH. The use of glucocorticoids in acute lymphoblastic leukemia of childhood. Molecular, cellular, and clinical considerations. J Pediatr Hematol Oncol. 1995;17:1–12. PubMed
Bostrom BC, Sensel MR, Sather HN, Gaynon PS, La MK, Johnston K, et al. Dexamethasone versus prednisone and daily oral versus weekly intravenous mercaptopurine for patients with standard-risk acute lymphoblastic leukemia: a report from the Children’s Cancer Group. Blood. 2003;101:3809–17. PubMed
Wellstein A, Giaccone G, Atkins MB, Sausville EA Cytotoxic Drugs. In: Brunton LL, Hilal-Dandan R, Knollmann BC (eds). Goodman & Gilman’s: The Pharmacological Basis of Therapeutics, 13e. McGraw-Hill Education: New York, NY, 2017. http://accessmedicine.mhmedical.com/content.aspx?aid=1162546947.
Rizzari C, Lanvers-Kaminsky C, Valsecchi MG, Ballerini A, Matteo C, Gerss J, et al. Asparagine levels in the cerebrospinal fluid of children with acute lymphoblastic leukemia treated with pegylated-asparaginase in the induction phase of the AIEOP-BFM ALL 2009 study. Haematologica. 2019;104:1812–21. PubMed PMC
Kloos RQH, Mathôt R, Pieters R, van der Sluis IM. Individualized dosing guidelines for PEGasparaginase and factors influencing the clearance: a population pharmacokinetic model. Haematologica. 2021;106:1254–61. PubMed PMC
Brigitha LJ, Pieters R, van der Sluis IM. How much asparaginase is needed for optimal outcome in childhood acute lymphoblastic leukaemia? A systematic review. Eur J Cancer. 2021;157:238–49. PubMed
Pui CH, Carroll WL, Meshinchi S, Arceci RJ. Biology, risk stratification, and therapy of pediatric acute leukemias: an update. J Clin Oncol. 2011;29:551–65. PubMed PMC
Toksvang LN, Lee SHR, Yang JJ, Schmiegelow K. Maintenance therapy for acute lymphoblastic leukemia: basic science and clinical translations. Leukemia. 2022;36:1749–58. PubMed PMC
Hryniuk W, Bush H. The importance of dose intensity in chemotherapy of metastatic breast cancer. J Clin Oncol. 1984;2:1281–8. PubMed
Hryniuk W, Levine MN. Analysis of dose intensity for adjuvant chemotherapy trials in stage II breast cancer. J Clin Oncol. 1986;4:1162–70. PubMed
Vary A, Lebellec L, Di Fiore F, Penel N, Cheymol C, Rad E, et al. FOLFIRINOX relative dose intensity and disease control in advanced pancreatic adenocarcinoma. Ther Adv Med Oncol. 2021;13. 10.1177/17588359211029825. PubMed PMC
Lund B, Åsberg A, Heyman M, Kanerva J, Harila-Saari A, Hasle H, et al. Risk factors for treatment related mortality in childhood acute lymphoblastic leukaemia. Pediatr Blood Cancer. 2011;56:551–9. PubMed
DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986;7:177–88. PubMed
Balduzzi S, Rücker G, Schwarzer G. How to perform a meta-analysis with R: a practical tutorial. Evid Based Ment Health. 2019;22:153–60. PubMed PMC
R Core Team. R: A language and environment for statistical computing. 2021. https://www.R-project.org/.
Lancia C, Anninga J, Spitoni C, Sydes MR, Whelan J, Hogendoorn PCW, et al. Method to measure the mismatch between target and achieved received dose intensity of chemotherapy in cancer trials: a retrospective analysis of the MRC BO06 trial in osteosarcoma. BMJ Open. 2019;9:e022980. PubMed PMC
Lancia C, Anninga JK, Sydes MR, Spitoni C, Whelan J, Hogendoorn PCW, et al. A novel method to address the association between received dose intensity and survival outcome: benefits of approaching treatment intensification at a more individualised level in a trial of the European Osteosarcoma Intergroup. Cancer Chemother Pharm. 2019;83:951–62. PubMed PMC
Mattano LA, Devidas M, Maloney KW, Wang C, Friedmann AM, Buckley P, et al. Favorable trisomies and ETV6-RUNX1 predict cure in low-risk b-cell acute lymphoblastic leukemia: results from Children’s Oncology Group Trial AALL0331. J Clin Oncol. 2021;39:1540–52. PubMed PMC
Eden T, Pieters R, Richards S. Systematic review of the addition of vincristine plus steroid pulses in maintenance treatment for childhood acute lymphoblastic leukaemia - an individual patient data meta-analysis involving659 children. Br J Haematol. 2010;149:722–33. PubMed
Angiolillo AL, Schore RJ, Kairalla JA, Devidas M, Rabin KR, Zweidler-McKay P, et al. Excellent outcomes with reduced frequency of vincristine and dexamethasone pulses in standard-risk b-lymphoblastic leukemia: results from Children’s Oncology Group AALL0932. J Clin Oncol. 2021;39:1437–47. PubMed PMC
Conter V, Valsecchi MG, Silvestri D, Campbell M, Dibar E, Magyarosy E, et al. Pulses of vincristine and dexamethasone in addition to intensive chemotherapy for children with intermediate-risk acute lymphoblastic leukaemia: a multicentre randomised trial. Lancet. 2007;369:123–31. PubMed
De Moerloose B, Suciu S, Bertrand Y, Mazingue F, Robert A, Uyttebroeck A, et al. Improved outcome with pulses of vincristine and corticosteroids in continuation therapy of children with average risk acute lymphoblastic leukemia (ALL) and lymphoblastic non-Hodgkin lymphoma (NHL): report of the EORTC randomized phase 3 trial 58951. Blood. 2010;116:36–44. PubMed PMC
Yang W, Cai J, Shen S, Gao J, Yu J, Hu S, et al. Pulse therapy with vincristine and dexamethasone for childhood acute lymphoblastic leukaemia (CCCG-ALL-2015): an open-label, multicentre, randomised, phase 3, non-inferiority trial. Lancet Oncol. 2021;22:1322–32. PubMed PMC
Seibel NL, Steinherz PG, Sather HN, Nachman JB, Delaat C, Ettinger LJ, et al. Early postinduction intensification therapy improves survival for children and adolescents with high-risk acute lymphoblastic leukemia: a report from the Children’s Oncology Group. Blood. 2008;111:2548–55. PubMed PMC
Richards S, Burrett J, Hann I, Chessells J, Hill F, Bailey C. Improved survival with early intensification: combined results from the Medical Research Council childhood ALL randomised trials, UKALL X and UKALL XI. Medical Research Council Working Party on Childhood Leukaemia. Leukemia. 1998;12:1031–6. PubMed
Usami I, Imamura T, Takahashi Y, Suenobu S, Hasegawa D, Hashii Y, et al. Discontinuation of L-asparaginase and poor response to prednisolone are associated with poor outcome of ETV6-RUNX1-positive pediatric B-cell precursor acute lymphoblastic leukemia. Int J Hematol. 2019;109:477–82. PubMed
Gupta S, Wang C, Raetz EA, Schore R, Salzer WL, Larsen EC, et al. Impact of asparaginase discontinuation on outcome in childhood acute lymphoblastic leukemia: a report from the Children’s Oncology Group. J Clin Oncol. 2020;38:1897–905. PubMed PMC
Gottschalk Højfeldt S, Grell K, Abrahamsson J, Lund B, Vettenranta K, Jónsson ÓG, et al. Relapse risk following truncation of pegylated asparaginase in childhood acute lymphoblastic leukemia. Blood. 2021;137:2373–82. PubMed
Ramakers-Van Woerden NL, Pieters R, Loonen AH, Hubeek I, Van Drunen E, Bema Beverloo H, et al. TEL/AML1 gene fusion is related to in vitro drug sensitivity for L-asparaginase in childhood acute lymphoblastic leukemia. Blood. 2000;96:1094–9. PubMed
Stams WAG, Den Boer ML, Beverloo HB, Meijerink JPP, Stigter RL, Van Wering ER, et al. Sensitivity to L-asparaginase is not associated with expression levels of asparagine synthetase in t(12;21)+ pediatric ALL. Blood. 2003;101:2743–7. PubMed
Stams WAG, Den Boer ML, Holleman A, Appel IM, Beverloo HB, Van Wering ER, et al. Asparagine synthetase expression is linked with L-asparaginase resistance in TEL-AML1-negative but not TEL-AML1-positive pediatric acute lymphoblastic leukemia. Blood. 2005;105:4223–5. PubMed
Keefe DA, Capizzi RL, Rudnick SA. Methotrexate cytotoxicity for L5178Y/Asn- lymphoblasts: relationship of dose and duration of exposure to tumor cell viability. Cancer Res. 1982;42:1641–5. PubMed
Ackland SP, Schilsky RL. High-dose methotrexate: a critical reappraisal. J Clin Oncol. 1987;5:2017–31. PubMed
Clarke M, Gaynon P, Hann I, Harrison G, Masera G, Peto R, et al. CNS-directed therapy for childhood acute lymphoblastic leukemia: Childhood ALL Collaborative Group overview of 43 randomized trials. J Clin Oncol. 2003;21:1798–809. PubMed
Lopez-Lopez E, Autry RJ, Smith C, Yang W, Paugh SW, Panetta JC, et al. Pharmacogenomics of intracellular methotrexate polyglutamates in patients’ leukemia cells in vivo. J Clin Invest. 2020;130:6600. PubMed PMC
Matloub Y, Lindemulder S, Gaynon PS, Sather H, La M, Broxson E, et al. Intrathecal triple therapy decreases central nervous system relapse but fails to improve event-free survival when compared with intrathecal methotrexate: results of the Children’s Cancer Group (CCG) 1952 study for standard-risk acute lymphoblastic leukemia, reported by the Children’s Oncology Group. Blood. 2006;108:1165–73. PubMed PMC
Salzer WL, Burke MJ, Devidas M, Dai Y, Hardy KK, Kairalla JA, et al. Impact of intrathecal triple therapy versus intrathecal methotrexate on disease-free survival for high-risk B-lymphoblastic leukemia: children’s oncology group study AALL1131. J Clin Oncol. 2020;38:2628–38. PubMed PMC
Schrappe M, Bleckmann K, Zimmermann M, Biondi A, Möricke A, Locatelli F, et al. Reduced-intensity delayed intensification in standard-risk pediatric acute lymphoblastic leukemia defined by undetectable minimal residual disease: results of an international randomized trial (AIEOP-BFM ALL 2000) J Clin Oncol. 2018;36:244–53. PubMed
Pieters R, de Groot-Kruseman H, Fiocco M, Verwer F, Van Overveld M, Sonneveld E, et al. Improved outcome for ALL by prolonging therapy for IKZF1 deletion and decreasing therapy for other risk groups. J Clin Oncol. 2023. 10.1200/JCO.22.02705. PubMed
Veerman AJ, Kamps WA, van den Berg H, van den Berg E, Bökkerink JP, Bruin MC, et al. Dexamethasone-based therapy for childhood acute lymphoblastic leukaemia: results of the prospective Dutch Childhood Oncology Group (DCOG) protocol ALL-9 (1997-2004) Lancet Oncol. 2009;10:957–66. PubMed
Oh BLZ, Lee SHR, Foo KM, Chiew KH, Seeto ZZL, Chen ZW, et al. Successful toxicity reduction during delayed intensification in the non-high-risk arm of Malaysia-Singapore Acute Lymphoblastic Leukaemia 2010 study. Eur J Cancer. 2021;142:92–101. PubMed
Conter V, Bartram CR, Valsecchi MG, Schrauder A, Panzer-Grümayer R, Möricke A, et al. Molecular response to treatment redefines all prognostic factors in children and adolescents with B-cell precursor acute lymphoblastic leukemia: results in 3184 patients of the AIEOP-BFM ALL 2000 study. Blood. 2010;115:3206–14. PubMed
Stow P, Key L, Chen X, Pan Q, Neale GA, Coustan-Smith E, et al. Clinical significance of low levels of minimal residual disease at the end of remission induction therapy in childhood acute lymphoblastic leukemia. Blood. 2010;115:4657–63. PubMed PMC
Zawitkowska J, Lejman M, Romiszewski M, Matysiak M, Ćwiklińska M, Balwierz W, et al. Results of two consecutive treatment protocols in Polish children with acute lymphoblastic leukemia. Sci Rep. 2020;10. 10.1038/S41598-020-75860-6. PubMed PMC
Pieters R, De Lorenzo P, Ancliffe P, Aversa LA, Brethon B, Biondi A, et al. Outcome of infants younger than 1 year with acute lymphoblastic leukemia treated with the interfant-06 protocol: results from an international phase iii randomized study. J Clin Oncol. 2019;37:2246–56. PubMed
O’Connor D, Enshaei A, Bartram J, Hancock J, Harrison C, Hough R, et al. Genotype-specific minimal residual disease interpretation improves stratification in pediatric acute lymphoblastic leukemia. J Clin Oncol. 2018;36:34–43. PubMed PMC