p.L1795F LRRK2 variant is a common cause of Parkinson's disease in Central Europe

. 2024 May 29 ; () : . [epub] 20240529

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic

Typ dokumentu časopisecké články, preprinty

Perzistentní odkaz   https://www.medvik.cz/link/pmid38854119

Pathogenic variants in LRRK2 are one of the most common genetic risk factors for Parkinson's disease (PD). Recently, the lesser-known p.L1795F variant was proposed as a strong genetic risk factor for PD, however, further families are currently lacking in literature. A multicentre young onset and familial PD cohort (n = 220) from 9 movement disorder centres across Central Europe within the CEGEMOD consortium was screened for rare LRRK2 variants using whole exome sequencing data. We identified 4 PD cases with heterozygous p.L1795F variant. All 4 cases were characterised by akinetic-rigid PD phenotype with early onset of severe motor fluctuations, 2 receiving LCIG therapy and 2 implanted with STN DBS; all 4 cases showed unsatisfactory effect of advanced therapies on motor fluctuations. Our data also suggest that p.L1795F may represent the most common currently known pathogenic LRRK2 variant in Central Europe compared to the more studied p.G2019S, being present in 1.81% of PD cases within the Central European cohort and 3.23% of familial PD cases. Together with the ongoing clinical trials for LRRK2 inhibitors, this finding emphasises the urgent need for more ethnic diversity in PD genetic research.

1st Faculty of Medicine Charles University and General University Hospital Prague

2nd Faculty of Medicine Charles University and Motol University Hospital

Charles University Prague

Comenius University and University Hospital Martin

Comenius University in Bratislava Faculty of Medicine University Hospital Bratislava

Comenius University in Bratislava Faculty of Medicine University Hospital Bratislava and Centre of Experimental Medicine Slovak Academy of Sciences

Department of Neurology and Centre of Clinical Neuroscience 1st Faculty of Medicine Charles University and General University Hospital Prague Czech Republic

Faculty of Medicine P J Šafárik University

Gottfried Schatz Research Center Medical University of Graz

Jessenius Faculty of Medicine Comenius University and University Hospital Martin

Medical School University of Pecs

P J Safarik University and University Hospital of L Pasteur

P J Safarik University Kosice

Pavol Jozef Safarik University and University Hospital of L Pasteur and UCL Queen Square Institute of Neurology

Radboud University Medical Centre; Donders institute for Brain Cognition and Behaviour Department of Neurology Parkinson Centre Nijmegen Nijmegen

Royal Veterinary College

Semmelweis University

Slovakia University

UCL Queen Square Institute of Neurology

UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery

UCL Queen Square Institute of Neurology University College London Queen Square London WC1N 3BG UK

University of Pecs Medical School

University of Szeged

Zvolen Hospital

Aktualizováno

PubMed

Zobrazit více v PubMed

Zimprich A. et al. Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology. Neuron 44, 601–607 (2004). PubMed

Paisán-Ruíz C. et al. Cloning of the gene containing mutations that cause PARK8-linked Parkinson’s disease. Neuron 44, 595–600 (2004). PubMed

Kluss J. H., Lewis P. A. & Greggio E. Leucine-rich repeat kinase 2 (LRRK2): an update on the potential therapeutic target for Parkinson’s disease. Expert Opin. Ther. Targets 26, 537–546 (2022). PubMed

Alessi D. R. & Pfeffer S. R. Leucine-Rich Repeat Kinases. Annu. Rev. Biochem. (2024) doi: 10.1146/annurev-biochem-030122-051144. PubMed DOI

Berwick D. C., Heaton G. R., Azeggagh S. & Harvey K. LRRK2 Biology from structure to dysfunction: research progresses, but the themes remain the same. Mol. Neurodegener. 14, 49 (2019). PubMed PMC

Bardien S., Lesage S., Brice A. & Carr J. Genetic characteristics of leucine-rich repeat kinase 2 (LRRK2) associated Parkinson’s disease. Parkinsonism Relat. Disord. 17, 501–508 (2011). PubMed

Kalogeropulou A. F. et al. Impact of 100 LRRK2 variants linked to Parkinson’s disease on kinase activity and microtubule binding. Biochem. J 479, 1759–1783 (2022). PubMed PMC

Borsche M. et al. The New p.F1700L LRRK2 Variant Causes Parkinson’s Disease by Extensively Increasing Kinase Activity. Mov. Disord. 38, 1105–1107 (2023). PubMed PMC

Li K. et al. LRRK2 A419V variant is a risk factor for Parkinson’s disease in Asian population. Neurobiol. Aging 36, 2908.e11–5 (2015). PubMed

Heckman M. G. et al. Population-specific frequencies for LRRK2 susceptibility variants in the Genetic Epidemiology of Parkinson’s Disease (GEO-PD) Consortium. Mov. Disord. 28, 1740–1744 (2013). PubMed PMC

Zhang Y. et al. Genetic Analysis of LRRK2 R1628P in Parkinson’s Disease in Asian Populations. Parkinsons Dis. 2017, 8093124 (2017). PubMed PMC

Sosero Y. L. et al. LRRK2 p.M1646T is associated with glucocerebrosidase activity and with Parkinson’s disease. Neurobiol. Aging 103, 142.e1–142.e5 (2021). PubMed PMC

Di Fonzo A. et al. A common missense variant in the LRRK2 gene, Gly2385Arg, associated with Parkinson’s disease risk in Taiwan. Neurogenetics 7, 133–138 (2006). PubMed

Lake J. et al. Coding and Noncoding Variation in LRRK2 and Parkinson’s Disease Risk. Mov. Disord. 37, 95–105 (2022). PubMed PMC

Pitz V. et al. Analysis of rare Parkinson’s disease variants in millions of people. Res Sq (2023) doi: 10.21203/rs.3.rs-2743857/v1. PubMed DOI PMC

Nichols W. C. et al. LRRK2 mutation analysis in Parkinson disease families with evidence of linkage to PARK8. Neurology 69, 1737–1744 (2007). PubMed

Ostrozovicova M. et al. Central European Group on Genetics of Movement Disorders. Eur. J. Neurol. 31, e16165 (2024). PubMed PMC

Myasnikov A. et al. Structural analysis of the full-length human LRRK2. Cell 184, 3519–3527.e10 (2021). PubMed PMC

Meng E. C. et al. UCSF ChimeraX: Tools for structure building and analysis. Protein Sci. 32, e4792 (2023). PubMed PMC

Skorvanek M. et al. LRRK2 mutations in Parkinson’s disease patients from Central Europe: A case control study. Parkinsonism Relat. Disord. 83, 110–112 (2021). PubMed

Lesage S. et al. Parkinson’s disease-related LRRK2 G2019S mutation results from independent mutational events in humans. Hum. Mol. Genet. 19, 1998–2004 (2010). PubMed

Bar-Shira A., Hutter C. M., Giladi N., Zabetian C. P. & Orr-Urtreger A. Ashkenazi Parkinson’s disease patients with the LRRK2 G2019S mutation share a common founder dating from the second to fifth centuries. Neurogenetics 10, 355–358 (2009). PubMed

Zabetian C. P. et al. LRRK2 G2019S in families with Parkinson disease who originated from Europe and the Middle East: evidence of two distinct founding events beginning two millennia ago. Am. J. Hum. Genet. 79, 752–758 (2006). PubMed PMC

Healy D. G. et al. Phenotype, genotype, and worldwide genetic penetrance of LRRK2-associated Parkinson’s disease: a case-control study. Lancet Neurol. 7, 583–590 (2008). PubMed PMC

Bouhouche A. et al. LRRK2 G2019S Mutation: Prevalence and Clinical Features in Moroccans with Parkinson’s Disease. Parkinsons Dis. 2017, 2412486 (2017). PubMed PMC

Ozelius L. J. et al. LRRK2 G2019S as a cause of Parkinson’s disease in Ashkenazi Jews. N. Engl. J. Med. 354, 424–425 (2006). PubMed

Tolosa E., Vila M., Klein C. & Rascol O. LRRK2 in Parkinson disease: challenges of clinical trials. Nat. Rev. Neurol. 16, 97–107 (2020). PubMed

Shu L., Zhang Y., Sun Q., Pan H. & Tang B. A Comprehensive Analysis of Population Differences in LRRK2 Variant Distribution in Parkinson’s Disease. Front. Aging Neurosci. 11, 13 (2019). PubMed PMC

Simón-Sánchez J. et al. Parkinson’s disease due to the R1441G mutation in Dardarin: a founder effect in the Basques. Mov. Disord. 21, 1954–1959 (2006). PubMed

Vinagre-Aragón A. et al. A More Homogeneous Phenotype in Parkinson’s Disease Related to R1441G Mutation in the LRRK2 Gene. Front. Neurol. 12, 635396 (2021). PubMed PMC

Aasly J. O. et al. Novel pathogenic LRRK2 p.Asn1437His substitution in familial Parkinson’s disease. Mov. Disord. 25, 2156–2163 (2010). PubMed PMC

Puschmann A. et al. Low prevalence of known pathogenic mutations in dominant PD genes: A Swedish multicenter study. Parkinsonism Relat. Disord. 66, 158–165 (2019). PubMed

Brockmann K. et al. Clinical and brain imaging characteristics in leucine-rich repeat kinase 2-associated PD and asymptomatic mutation carriers. Mov. Disord. 26, 2335–2342 (2011). PubMed

Zhao Y. et al. The role of genetics in Parkinson’s disease: a large cohort study in Chinese mainland population. Brain 143, 2220–2234 (2020). PubMed

Li N. et al. Whole-exome sequencing in early-onset Parkinson’s disease among ethnic Chinese. Neurobiol. Aging 90, 150.e5–150.e11 (2020). PubMed

Sun Y.-M. et al. Autosomal dominant Parkinson’s disease caused by the recently identified LRRK2 N1437D mutation in a Chinese family: Clinical features, imaging findings, and functional impact. Parkinsonism Relat. Disord. 111, 105441 (2023). PubMed

Funayama M. et al. An LRRK2 mutation as a cause for the parkinsonism in the original PARK8 family. Ann. Neurol. 57, 918–921 (2005). PubMed

Lu C.-S. et al. The LRRK2 I2012T, G2019S, and I2020T mutations are rare in Taiwanese patients with sporadic Parkinson’s disease. Parkinsonism Relat. Disord. 11, 521–522 (2005). PubMed

Ross O. A. et al. Association of LRRK2 exonic variants with susceptibility to Parkinson’s disease: a case-control study. Lancet Neurol. 10, 898–908 (2011). PubMed PMC

Turski P. et al. Review of the epidemiology and variability of LRRK2 non-p.Gly2019Ser pathogenic mutations in Parkinson’s disease. Front. Neurosci. 16, 971270 (2022). PubMed PMC

Marín I. Ancient origin of the Parkinson disease gene LRRK2. J. Mol. Evol. 67, 41–50 (2008). PubMed

Li X. et al. Leucine-rich repeat kinase 2 (LRRK2)/PARK8 possesses GTPase activity that is altered in familial Parkinson’s disease R1441C/G mutants. J. Neurochem. 103, 238–247 (2007). PubMed PMC

Guo L. et al. The Parkinson’s disease-associated protein, leucine-rich repeat kinase 2 (LRRK2), is an authentic GTPase that stimulates kinase activity. Exp. Cell Res. 313, 3658–3670 (2007). PubMed PMC

Ito G. et al. GTP binding is essential to the protein kinase activity of LRRK2, a causative gene product for familial Parkinson’s disease. Biochemistry 46, 1380–1388 (2007). PubMed

Minton K. Predicting variant pathogenicity with AlphaMissense. Nat. Rev. Genet. 24, 804 (2023). PubMed

Farrer M. J. Genetics of Parkinson disease: paradigm shifts and future prospects. Nat. Rev. Genet. 7, 306–318 (2006). PubMed

Saunders-Pullman R., Raymond D. & Elango S. LRRK2 Parkinson Disease. in GeneReviews PubMed

Alessi D. R. & Sammler E. LRRK2 kinase in Parkinson’s disease. Science 360, 36–37 (2018). PubMed

Johansen K. K., White L. R., Farrer M. J. & Aasly J. O. Subclinical signs in LRRK2 mutation carriers. Parkinsonism Relat. Disord. 17, 528–532 (2011). PubMed

Alcalay R. N. et al. Neuropsychological performance in LRRK2 G2019S carriers with Parkinson’s disease. Parkinsonism Relat. Disord. 21, 106–110 (2015). PubMed PMC

Barber T. R. et al. Prodromal Parkinsonism and Neurodegenerative Risk Stratification in REM Sleep Behavior Disorder. Sleep 40, (2017). PubMed PMC

Trinh J. et al. Genotype-phenotype relations for the Parkinson’s disease genes SNCA, LRRK2, VPS35: MDSGene systematic review. Mov. Disord. 33, 1857–1870 (2018). PubMed

Marras C. et al. Motor and nonmotor heterogeneity of LRRK2-related and idiopathic Parkinson’s disease. Mov. Disord. 31, 1192–1202 (2016). PubMed

West A. B. et al. Parkinson’s disease-associated mutations in leucine-rich repeat kinase 2 augment kinase activity. Proc. Natl. Acad. Sci. U. S. A. 102, 16842–16847 (2005). PubMed PMC

Cookson M. R. The role of leucine-rich repeat kinase 2 (LRRK2) in Parkinson’s disease. Nat. Rev. Neurosci. 11, 791–797 (2010). PubMed PMC

Dan X. et al. MAPT IVS1+124 C>G modi es risk of LRRK2 G2385R for Parkinson’s disease in Chinese individuals. Neurobiol. Aging 35, 1780.e7–1780.e10 (2014). PubMed

Golub Y. et al. Genetic factors influencing age at onset in LRRK2-linked Parkinson disease. Parkinsonism Relat. Disord. 15, 539–541 (2009). PubMed

Gan-Or Z. et al. The age at motor symptoms onset in LRRK2-associated Parkinson’s disease is affected by a variation in the MAPT locus: a possible interaction. J. Mol. Neurosci. 46, 541–544 (2012). PubMed

Alcalay R. N. et al. Longitudinal Measurements of Glucocerebrosidase activity in Parkinson’s patients. Ann Clin Transl Neurol 7, 1816–1830 (2020). PubMed PMC

Postuma R. B. et al. MDS clinical diagnostic criteria for Parkinson’s disease. Mov. Disord. 30, 1591–1601 (2015). PubMed

Goetz C. G. et al. Movement Disorder Society-sponsored revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS): scale presentation and clinimetric testing results. Mov. Disord. 23, 2129–2170 (2008). PubMed

Hoehn M. M. & Yahr M. D. Parkinsonism: onset, progression and mortality. Neurology 17, 427–442 (1967). PubMed

Nasreddine Z. S. et al. The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J. Am. Geriatr. Soc. 53, 695–699 (2005). PubMed

Pagonabarraga J. et al. Parkinson’s disease-cognitive rating scale: a new cognitive scale specific for Parkinson’s disease. Mov. Disord. 23, 998–1005 (2008). PubMed

Chaudhuri K. R. et al. The metric properties of a novel non-motor symptoms scale for Parkinson’s disease: Results from an international pilot study. Mov. Disord. 22, 1901–1911 (2007). PubMed

Visser M., Marinus J., Stiggelbout A. M. & Van Hilten J. J. Assessment of autonomic dysfunction in Parkinson’s disease: the SCOPA-AUT. Mov. Disord. 19, 1306–1312 (2004). PubMed

Stiasny-Kolster K. et al. The REM sleep behavior disorder screening questionnaire--a new diagnostic instrument. Mov. Disord. 22, 2386–2393 (2007). PubMed

Johns M. W. A new method for measuring daytime sleepiness: the Epworth sleepiness scale. Sleep 14, 540–545 (1991). PubMed

Smets E. M., Garssen B., Bonke B. & De Haes J. C. The Multidimensional Fatigue Inventory (MFI) psychometric qualities of an instrument to assess fatigue. J. Psychosom. Res. 39, 315–325 (1995). PubMed

Beck A. T., Steer R. A., Ball R. & Ranieri W. Comparison of Beck Depression Inventories -IA and -II in psychiatric outpatients. J. Pers. Assess. 67, 588–597 (1996). PubMed

Leentjens A. F. G. et al. The Parkinson Anxiety Scale (PAS): development and validation of a new anxiety scale. Mov. Disord. 29, 1035–1043 (2014). PubMed

Weintraub D. et al. Questionnaire for Impulsive-Compulsive Disorders in Parkinson’s Disease-Rating Scale. Mov. Disord. 27, 242–247 (2012). PubMed PMC

Jenkinson C., Fitzpatrick R., Peto V., Greenhall R. & Hyman N. The Parkinson’s Disease Questionnaire (PDQ-39): development and validation of a Parkinson’s disease summary index score. Age Ageing 26, 353–357 (1997). PubMed

Modi A., Vai S., Caramelli D. & Lari M. The Illumina Sequencing Protocol and the NovaSeq 6000 System. Methods Mol. Biol. 2242, 15–42 (2021). PubMed

Blauwendraat C., Nalls M. A. & Singleton A. B. The genetic architecture of Parkinson’s disease. Lancet Neurol. 19, 170–178 (2020). PubMed PMC

Rozen S. & Skaletsky H. Primer3 on the WWW for general users and for biologist programmers. Methods Mol. Biol. 132, 365–386 (2000). PubMed

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...