Structure-Based Drug Design of ADRA2A Antagonists Derived from Yohimbine
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
38857067
PubMed Central
PMC11215778
DOI
10.1021/acs.jmedchem.4c00323
Knihovny.cz E-zdroje
- MeSH
- alfa-2-adrenergní receptory - antagonisté * farmakologie chemie chemická syntéza MeSH
- alfa-2-adrenergní receptory * metabolismus MeSH
- lidé MeSH
- racionální návrh léčiv * MeSH
- vztahy mezi strukturou a aktivitou MeSH
- yohimbin * farmakologie chemie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- ADRA2A protein, human MeSH Prohlížeč
- alfa-2-adrenergní receptory - antagonisté * MeSH
- alfa-2-adrenergní receptory * MeSH
- yohimbin * MeSH
Yohimbine, a natural indole alkaloid and a nonselective adrenoceptor antagonist, possesses potential benefits in treating inflammatory disorders and sepsis. Nevertheless, its broader clinical use faces challenges due to its low receptor selectivity. A structure-activity relationship study of novel yohimbine analogues identified amino esters of yohimbic acid as potent and selective ADRA2A antagonists. Specifically, amino ester 4n, in comparison to yohimbine, showed a 6-fold higher ADRA1A/ADRA2A selectivity index (SI > 556 for 4n) and a 25-fold higher ADRA2B/ADRA2A selectivity index. Compound 4n also demonstrated high plasma and microsomal stability, moderate-to-low membrane permeability determining its limited ability to cross the blood-brain barrier, and negligible toxicity on nontumor normal human dermal fibroblasts. Compound 4n represents an important complementary pharmacological tool to study the involvement of adrenoceptor subtypes in pathophysiologic conditions such as inflammation and sepsis and a novel candidate for further preclinical development to treat ADRA2A-mediated pathologies.
Zobrazit více v PubMed
Fleischmann C.; Scherag A.; Adhikari N. K. J.; Hartog C. S.; Tsaganos T.; Schlattmann P.; Angus D. C.; Reinhart K. Assessment of Global Incidence and Mortality of Hospital-Treated Sepsis Current Estimates and Limitations. Am. J. Respir. Crit. Care Med. 2016, 193 (3), 259–272. 10.1164/rccm.201504-0781OC. PubMed DOI
Yan J.; Li S.; Li S. The Role of the Liver in Sepsis. Int. Rev. Immunol. 2014, 33 (6), 498–510. 10.3109/08830185.2014.889129. PubMed DOI PMC
Strnad P.; Tacke F.; Koch A.; Trautwein C. Liver - Guardian, Modifier and Target of Sepsis. Nat. Rev. Gastroenterol. Hepatol. 2017, 14 (1), 55–66. 10.1038/nrgastro.2016.168. PubMed DOI
Woźnica E. A.; Inglot M.; Woźnica R. K.; Łysenko L. Liver Dysfunction in Sepsis. Adv. Clin. Exp. Med. 2018, 27 (4), 547–551. 10.17219/acem/68363. PubMed DOI
Wang P.; Chaudry I. H. Mechanism of Hepatocellular Dysfunction during Hyperdynamic Sepsis. Am. J. Physiol.: Regul., Integr. Comp. Physiol. 1996, 270 (5), R927.10.1152/ajpregu.1996.270.5.R927. PubMed DOI
Zhou M.; Das P.; Simms H. H.; Wang P. Gut-Derived Norepinephrine Plays an Important Role in up-Regulating IL-1β and IL-10. Biochim. Biophys. Acta, Mol. Basis Dis. 2005, 1740 (3), 446–452. 10.1016/j.bbadis.2004.11.005. PubMed DOI
Zhou M.; Yang S.; Koo D. J.; Ornan D. A.; Chaudry I. H.; Wang P. The Role of Kupffer Cell Alpha-2 Adrenoceptors in Norepinephrine-Induced TNF-Alpha Production. Biochim. Biophys. Acta - Mol. Basis Dis. 2001, 1537 (1), 49–57. 10.1016/S0925-4439(01)00055-2. PubMed DOI
Miksa M.; Das P.; Zhou M.; Wu R.; Dong W.; Ji Y.; Goyert S. M.; Ravikumar T. S.; Wang P.; Morty R. E. Pivotal Role of the α2A-Adrenoceptor in Producing Inflammation and Organ Injury in a Rat Model of Sepsis. PLoS One 2009, 4 (5), e550410.1371/journal.pone.0005504. PubMed DOI PMC
Sharma N.; Sistla R.; Andugulapati S. B. Yohimbine Ameliorates Liver Inflammation and Fibrosis by Regulating Oxidative Stress and Wnt/β-Catenin Pathway. Phytomedicine 2024, 123, 15518210.1016/j.phymed.2023.155182. PubMed DOI
van Noppen C. J.; Serpentina R. The Components and Their Pharmacological Effect. Chem. Zentralbl. 1955, 126 (24), 209–5597.
Danckwortt P. W.; Luy P. Zur Kenntnis der Alkaloide der Yohimberinde. Arch. Pharm. Ber. Dtsch. Pharm. Ges. 1924, 262, 81–104. 10.1002/ardp.19242620202. DOI
Jabir N. R.; Firoz C. K.; Zughaibi T. A.; Alsaadi M. A.; Abuzenadah A. M.; Al-Asmari A. I.; Alsaieedi A.; Ahmed B. A.; Ramu A. K.; Tabrez S. A Literature Perspective on the Pharmacological Applications of Yohimbine. Ann. Med. 2022, 54 (1), 2849–2863. 10.1080/07853890.2022.2131330. PubMed DOI PMC
Holmberg G.; Gershon S. Autonomic and Psychic Effects of Yohimbine Hydrochloride. Psychopharmacologia 1961, 2, 93–106. 10.1007/BF00592678. PubMed DOI
Millan M. J.; Newman-Tancredi A.; Audinot V.; Cussac D.; Lejeune F.; Nicolas J. P.; Cogé F.; Galizzi J. P.; Boutin J. A.; Rivet J. M.; Dekeyne A.; Gobert A. Agonist and Antagonist Actions of Yohimbine as Compared to Fluparoxan at Α2-Adrenergic Receptors (AR)s, Serotonin (5-HT)(1A), 5-HT(1B), 5-HT(1D) and Dopamine D2 and D3 Receptors. Significance for the Modulation of Frontocortical Monoaminergic Transmission. Synapse 2000, 35 (2), 79–95. 10.1002/(SICI)1098-2396(200002)35:2<79::AID-SYN1>3.0.CO;2-X. PubMed DOI
Carruthers S. G. Adverse Effects of Alpha 1-Adrenergic Blocking Drugs. Drug Saf. 1994, 11 (1), 12–20. 10.2165/00002018-199411010-00003. PubMed DOI
Klein C.; Gerber J. G.; Payne N. A.; Nies A. S. The Effect of Age on the Sensitivity of the Alpha 1-Adrenoceptor to Phenylephrine and Prazosin. Clin. Pharmacol. Ther. 1990, 47 (4), 535–539. 10.1038/clpt.1990.68. PubMed DOI
Hernandez G.; Bruhn A.; Castro R.; Pedreros C.; Rovegno M.; Kattan E.; Veas E.; Fuentealba A.; Regueira T.; Ruiz C.; Ince C. Persistent Sepsis-Induced Hypotension without Hyperlactatemia: A Distinct Clinical and Physiological Profile within the Spectrum of Septic Shock. Crit. Care Res. Pract. 2012, 2012, 53685210.1155/2012/536852. PubMed DOI PMC
Ramirez J. Severe Hypotension Associated with α Blocker Tamsulosin. BMJ 2013, 347, f6492.10.1136/bmj.f6492. PubMed DOI
Frishman W. H.; Kotob F. Alpha-Adrenergic Blocking Drugs in Clinical Medicine. J. Clin. Pharmacol. 1999, 39 (1), 7–16. 10.1177/00912709922007516. PubMed DOI
Gu X.; Zhou F.; Wang Y.; Fan G.; Cao B. Respiratory Viral Sepsis: Epidemiology, Pathophysiology, Diagnosis and Treatment. Eur. Respir. Rev. 2020, 29 (157), 20003810.1183/16000617.0038-2020. PubMed DOI PMC
Boyer E. W.; Shannon M. The Serotonin Syndrome. N. Engl. J. Med. 2005, 352 (11), 1112–1120. 10.1056/NEJMra041867. PubMed DOI
Garcia-Garcia A. L.; Newman-Tancredi A.; Leonardo E. D. 5-HT(1A) [Corrected] Receptors in Mood and Anxiety: Recent Insights into Autoreceptor versus Heteroreceptor Function. Psychopharmacology (Berl). 2014, 231 (4), 623–636. 10.1007/s00213-013-3389-x. PubMed DOI PMC
Johnston K. D.; Lu Z.; Rudd J. A. Looking beyond 5-HT(3) Receptors: A Review of the Wider Role of Serotonin in the Pharmacology of Nausea and Vomiting. Eur. J. Pharmacol. 2014, 722, 13–25. 10.1016/j.ejphar.2013.10.014. PubMed DOI
Philipp M.; Brede M.; Hein L. Physiological Significance of Alpha(2)-Adrenergic Receptor Subtype Diversity: One Receptor Is Not Enough. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2002, 283 (2), R287–95. 10.1152/ajpregu.00123.2002. PubMed DOI
Huggins D. J.; Sherman W.; Tidor B. Rational Approaches to Improving Selectivity in Drug Design. J. Med. Chem. 2012, 55 (4), 1424–1444. 10.1021/jm2010332. PubMed DOI PMC
Antonovic A. K.; Ochala J.; Fornili A. Comparative Study of Binding Pocket Structure and Dynamics in Cardiac and Skeletal Myosin. Biophys. J. 2023, 122 (1), 54–62. 10.1016/j.bpj.2022.11.2942. PubMed DOI PMC
Ehrt C.; Brinkjost T.; Koch O. A Benchmark Driven Guide to Binding Site Comparison: An Exhaustive Evaluation Using Tailor-Made Data Sets (ProSPECCTs). PLOS Comput. Biol. 2018, 14 (11), e100648310.1371/journal.pcbi.1006483. PubMed DOI PMC
Wang P.Treatment of Sepsis and Inflammation with Alpha2a Adrenergic Antagonists. US910791B2, 2015.
Qu L.; Zhou Q. T.; Wu D.; Zhao S. W.. Crystal Structures of the Alpha2A Adrenergic Receptor in Complex with an Antagonist RSC. PDBj 2019.10.2210/pdb6kux/pdb DOI
Yuan D.; Liu Z.; Kaindl J.; Maeda S.; Zhao J.; Sun X.; Xu J.; Gmeiner P.; Wang H.-W.; Kobilka B. K. Activation of the α(2B) Adrenoceptor by the Sedative Sympatholytic Dexmedetomidine. Nat. Chem. Biol. 2020, 16 (5), 507–512. 10.1038/s41589-020-0492-2. PubMed DOI
Chen X. Y.; Wu L. J.; Wu D.; Zhong G. S.. Crystal Structure of Human Alpha2C Adrenergic G Protein-Coupled Receptor. PDB National Natural Science Foundation of China 2019.
Varadi M.; Anyango S.; Deshpande M.; Nair S.; Natassia C.; Yordanova G.; Yuan D.; Stroe O.; Wood G.; Laydon A.; Žídek A.; Green T.; Tunyasuvunakool K.; Petersen S.; Jumper J.; Clancy E.; Green R.; Vora A.; Lutfi M.; Figurnov M.; Cowie A.; Hobbs N.; Kohli P.; Kleywegt G.; Birney E.; Hassabis D.; Velankar S. AlphaFold Protein Structure Database: Massively Expanding the Structural Coverage of Protein-Sequence Space with High-Accuracy Models. Nucleic Acids Res. 2022, 50 (D1), D439–D444. 10.1093/nar/gkab1061. PubMed DOI PMC
Xu P.; Huang S.; Zhang H.; Mao C.; Zhou X. E.; Cheng X.; Simon I. A.; Shen D.-D.; Yen H.-Y.; Robinson C. V.; Harpsøe K.; Svensson B.; Guo J.; Jiang H.; Gloriam D. E.; Melcher K.; Jiang Y.; Zhang Y.; Xu H. E. Structural Insights into the Lipid and Ligand Regulation of Serotonin Receptors. Nature 2021, 592 (7854), 469–473. 10.1038/s41586-021-03376-8. PubMed DOI
Grainger J. D.; Reckless J.; Fox J. D. Broad Spectrum Chemokine Inhibitors Related to NR58–3.14.3. Mini-Reviews in Medicinal Chemistry. 2005, 5, 825–832. 10.2174/1389557054867101. PubMed DOI
Taveras A. G.; Chao J.; Biju P. J.; Yu Y.; Fine J. S.; Hipkin W.; Aki S. J.; Merritt R. J.; Li G.; Baldwin J. J.; Lai G.; Wu M.; Hecker E. A.; Thiadiazoledioxides and Thiadiazoleoxides as Cxc- and Cc-Chemokine Receptor Ligands, US7691856B22004.
Young S. D.; Buse C. T.; Heathcock C. H. 2-Methyl-2-(Trimethylsilyloxy)Pentan-3-One. Org. Synth. 1985, 63, 79–88. 10.15227/orgsyn.063.0079. DOI
Michael S. W.; Mark F. S.; Kathleen S. S.; George W. G.. Benzothiazol-2-Ylazo-Phenyl Compound as Dye, Compositions Including the Dye, and Method of Determining Degree of Cure of Such Compositions. WO2014151708A1, 2014.
Englund E. A.; Gopi H. N.; Appella D. H. An Efficient Synthesis of a Probe for Protein Function: 2,3-Diaminopropionic Acid with Orthogonal Protecting Groups. Org. Lett. 2004, 6 (2), 213–215. 10.1021/ol0361599. PubMed DOI
Ali H. M.; Koza G.; Hameed R. T.; Rowles R.; Davies C.; Al Dulayymi J. R.; Gwenin C. D.; Baird M. S. The Synthesis of Single Enantiomers of Trans-Alkene Containing Mycolic Acids and Related Sugar Esters. Tetrahedron 2016, 72 (45), 7143–7158. 10.1016/j.tet.2016.08.089. DOI
Huang G.; Li B.; Li Y.. Preparation of Halogen-Substituted Larotrectinib Compound as Trk PET Probe, 2021.
Muntener T.; Thommen F.; Joss D.; Kottelat J.; Prescimone A.; Haussinger D. Synthesis of Chiral Nine and Twelve-Membered Cyclic Polyamines from Natural Building Blocks. Chem. Commun. 2019, 55 (32), 4715–4718. 10.1039/C9CC00720B. PubMed DOI
Stahl S. M.; Felker A.. Alpha 2 Antagonists as Serotonin and Norepinephrine Disinhibitors (SNDIs) and Serotonin Antagonist/Reuptake Inhibitors (SARIs). In Stahl’s Illustrated Antidepressants; Stahl’s Illustrated; Cambridge University Press: Cambridge, 2009; pp 83–96.
Invernizzi R. W.; Garattini S. Role of Presynaptic Alpha2-Adrenoceptors in Antidepressant Action: Recent Findings from Microdialysis Studies. Prog. Neuropsychopharmacol. Biol. Psychiatry 2004, 28 (5), 819–827. 10.1016/j.pnpbp.2004.05.026. PubMed DOI
Newby D.; Freitas A.; Ghafourian T.; Comparing Caco-2 And MDCK Permeability For Oral Absorption Estimations. In Medway School of Pharmacy; 2013, pp 2–3.
Jin X.; Luong T.-L.; Reese N.; Gaona H.; Collazo-Velez V.; Vuong C.; Potter B.; Sousa J. C.; Olmeda R.; Li Q.; Xie L.; Zhang J.; Zhang P.; Reichard G.; Melendez V.; Marcsisin S. R.; Pybus B. S. Comparison of MDCK-MDR1 and Caco-2 Cell Based Permeability Assays for Anti-Malarial Drug Screening and Drug Investigations. J. Pharmacol. Toxicol. Methods 2014, 70 (2), 188–194. 10.1016/j.vascn.2014.08.002. PubMed DOI
Itoh A.; Kumashiro T.; Yamaguchi M.; Nagakura N.; Mizushina Y.; Nishi T.; Tanahashi T. Indole Alkaloids and Other Constituents of Rauwolfia Serpentina. J. Nat. Prod. 2005, 68 (6), 848–852. 10.1021/np058007n. PubMed DOI
Šmídková M.; Dvoráková A.; Tloust’ová E.; Česnek M.; Janeba Z.; Mertlíková-Kaiserová H. Amidate Prodrugs of 9-[2-(Phosphonomethoxy)Ethyl]Adenine as Inhibitors of Adenylate Cyclase Toxin from Bordetella Pertussis. Antimicrob. Agents Chemother. 2014, 58 (2), 664–671. 10.1128/AAC.01685-13. PubMed DOI PMC