Determination of the binding constants and ionic mobilities of diquat complexes with randomly sulfated cyclodextrins by affinity capillary electrophoresis

. 2024 Jun ; 47 (11) : e2400286.

Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38863086

Grantová podpora
61388963 Czech Academy of Sciences

The enantiomers of diquats (DQs), a new class of functional organic molecules, were recently separated by capillary electrophoresis (CE) with high resolution up to 11.4 within 5-7 min using randomly sulfated α-, β-, and γ-cyclodextrins (CDs) as chiral selectors. These results indicated strong interactions between dicationic diquats and multiply negatively charged sulfated CDs (S-CDs). However, the binding strength of these interactions was not quantified. For that reason, in this study, affinity CE was applied for the determination of the binding constants and ionic mobilities of the complexes of DQ P- and M-enantiomers with CD chiral selectors in an aqueous medium. The non-covalent interactions of 10 pairs of DQ enantiomers with the above CDs were investigated in a background electrolyte (BGE) composed of 22 mM NaOH, 35 mM H3PO4, pH 2.5, and 0.0-1.0 mM concentrations of CDs. The average apparent binding constant and the average actual ionic mobility of the DQ-CD complexes were determined by nonlinear regression analysis of the dependence of the effective mobility of DQ enantiomers on the concentration of CDs in the BGE. The complexes were found to be relatively strong with the averaged apparent binding constants in the range 13 600-547 400 L/mol.

Zobrazit více v PubMed

Riesova M, Svobodova J, Uselova K, Tosner Z, Zuskova I, Gas B. Determination of thermodynamic values of acidic dissociation constants and complexation constants of profens and their utilization for optimization of separation conditions by Simul 5 Complex. J Chromatogr A. 2014;1364:276–288.

Aranyi A, Peter A, Ilisz I, Fulop F, Scriba GKE. Cyclodextrin‐mediated enantioseparation of phenylalanine amide derivatives and amino alcohols by capillary electrophoresis‐Role of complexation constants and complex mobilities. Electrophoresis. 2014;35:2848–2854.

Kanizsova L, Ansorge M, Zuskova I, Dubsky P. Using single‐isomer octa(6‐O‐sulfo)‐gamma‐cyclodextrin for fast capillary zone electrophoretic enantioseparation of pindolol: Determination of complexation constants, software‐assisted optimization, and method validation. J Chromatogr A. 2018;1568:214–221.

Chankvetadze B. Contemporary theory of enantioseparations in capillary electrophoresis. J Chromatogr A. 2018;1567:2–25.

Sursyakova VV, Levdansky VA, Rubaylo AI. Evaluation of the effect of background electrolyte composition and independence of parameters in determining binding constants of betulin derivatives to beta‐ and dimethyl‐beta‐cyclodextrins by affinity capillary electrophoresis. J Sep Sci. 2022;45:3745–3753.

Iftekhar S, Rauhauser M, Hage BD, Hage DS. Determination of binding constants by ultrafast affinity extraction: Theoretical and experimental studies of optimum conditions for analysis. J Chromatogr A. 2023;1707:464307.

Nevidalova H, Michalcova L, Glatz Z. In‐depth insight into the methods of plasma protein‐drug interaction studies: comparison of capillary electrophoresis‐frontal analysis, isothermal titration calorimetry, circular dichroism and equilibrium dialysis. Electrophoresis. 2018;39:581–589.

Zhao Y, Grigoryan G. Multiplex measurement of protein‐peptide dissociation constants using dialysis and mass spectrometry. Protein Sci. 2023;32:e4607.

Rafols C, Amezqueta S, Fuguet E, Bosch E. Molecular interactions between warfarin and human (HSA) or bovine (BSA) serum albumin evaluated by isothermal titration calorimetry (ITC), fluorescence spectrometry (FS) and frontal analysis capillary electrophoresis (FA/CE). J Pharm Biomed Anal. 2018;150:452–459.

Falconer RJ, Schuur B, Mittermaier AK. Applications of isothermal titration calorimetry in pure and applied research from 2016 to 2020. J Mol Recogn. 2021;34:e2901.

Sursyakova VV, Maksimov NG, Levdansky VA, Rubaylo AI. Spectrophotometric study of complexation between betulin 3,28‐diphthalate and beta‐cyclodextrin. J Incl Phenom Macrocycl Chem. 2023;103:109–121.

Safina G. Application of surface plasmon resonance for the detection of carbohydrates, glycoconjugates, and measurement of the carbohydrate‐specific interactions: A comparison with conventional analytical techniques. A critical review. Anal Chim Acta. 2012;712:9–29.

Greno M, Salgado A, Castro‐Puyana M, Marina ML. Nuclear magnetic resonance to study the interactions acting in the enantiomeric separation of homocysteine by capillary electrophoresis with a dual system of gamma‐cyclodextrin and the chiral ionic liquid EtCholNTf(2). Electrophoresis. 2019;40:1913–1920.

Krait S, Salgado A, Peluso P, Malanga M, Sohajda T, Benkovics G, et al. Complexation of daclatasvir by single isomer methylated beta‐cyclodextrins studied by capillary electrophoresis, NMR spectroscopy and mass spectrometry. Carbohydr Polym. 2021;273:118486.

Bennett JL, Nguyen GTH, Donald WA. Protein‐small molecule interactions in native mass spectrometry. Chem Rev. 2022;122:7327–7385.

Rodriguez EL, Poddar S, Iftekhar S, Suh K, Woolfork AG, Ovbude S, et al. Affinity chromatography: a review of trends and developments over the past 50 years. J Chromatogr B. 2020;1157:122332.

Horejsi V, Ticha M. Qualitative and quantitative applications of affinity electrophoresis for the study of protein ligand interactions—a review. J Chromatogr. 1986;376:49–67.

Krause F. Detection and analysis of protein‐protein interactions in organellar and prokaryotic proteomes by native gel electrophoresis: (Membrane) protein complexes and supercomplexes. Electrophoresis. 2006;27:2759–2781.

Asmari M, Michalcova L, Ibrahim AE, Glatz Z, Watzig H, El Deeb S. Studying molecular interactions via capillary electrophoresis and microscale thermophoresis: A review. Electrophoresis. 2023;44:1114–1142.

Wang Y, Adeoye DI, Ogunkunle EO, Wei IA, Filla RT, Roper MG. Affinity capillary electrophoresis: a critical review of the literature from 2018 to 2020. Anal Chem. 2021;93:295–310.

Sharmeen S, Kyei I, Hatch A, Hage DS. Analysis of drug interactions with serum proteins and related binding agents by affinity capillary electrophoresis: a review. Electrophoresis. 2022;43:2302–2323.

Dvorak M, Svobodova J, Benes M, Gas B. Applicability and limitations of affinity capillary electrophoresis and vacancy affinity capillary electrophoresis methods for determination of complexation constants. Electrophoresis. 2013;34:761–767.

Pan YC, Karns K, Herr AE. Microfluidic electrophoretic mobility shift assays for quantitative biochemical analysis. Electrophoresis. 2014;35:2078–2090.

Alhazmi HA, Javed SA, Ahsan W, Rehmana Z, Al Bratty M, El Deeb S, et al. Investigation of binding behavior of important metal ions to thioredoxin reductase using mobility‐shift affinity capillary electrophoresis: A preliminary insight into the development of new metal‐based anticancer drugs. Microchem J. 2019;145:259–265.

Mlcochova H, Ratih R, Michalcova L, Watzig H, Glatz Z, Stein M. Comparison of mobility shift affinity capillary electrophoresis and capillary electrophoresis frontal analysis for binding constant determination between human serum albumin and small drugs. Electrophoresis. 2022;43:1724–1734.

Nevidalova H, Michalcova L, Glatz Z. Capillary electrophoresis‐based approaches for the study of affinity interactions combined with various sensitive and nontraditional detection techniques. Electrophoresis. 2019;40:625–642.

Romano EF, Quirino JP. Frontal analysis capillary electrophoresis: recent advances and future perspectives. Bioanalysis. 2018;10:1143–1159.

Lounis FM, Chamieh J, Leclercq L, Gonzalez P, Cottet H. Modelling and predicting the interactions between oppositely and variously charged polyelectrolytes by frontal analysis continuous capillary electrophoresis. Soft Matter. 2016;12:9728–9737.

Ruzicka M, Koval D, Vavra J, Reyes‐Gutierrez PE, Teply F, Kasicka V. Interactions of helquats with chiral acidic aromatic analytes investigated by partial‐filling affinity capillary electrophoresis. J Chromatogr A. 2016;1467:417–426.

Ansorge M, Dubsky P, Uselova K. Into the theory of the partial‐filling affinity capillary electrophoresis and the determination of apparent stability constants of analyte‐ligand complexes. Electrophoresis. 2018;39:742–751.

Solinova V, Zakova L, Jiracek J, Kasicka V. Pressure assisted partial filling affinity capillary electrophoresis employed for determination of binding constants of human insulin hexamer complexes with serotonin, dopamine, arginine, and phenol. Anal Chim Acta. 2019;1052:170–178.

Mitsuno E, Endo T, Hisamoto H, Sueyoshi K. Evaluation of the interactions between oligonucleotides and small molecules by partial filling‐nonequilibrium affinity capillary electrophoresis. Anal Sci. 2022;38:851–859.

Krylov SN. Kinetic CE: foundation for homogeneous kinetic affinity methods. Electrophoresis. 2007;28:69–88.

Le ATH, Krylova SM, Krylov SN. Kinetic capillary electrophoresis in screening oligonucleotide libraries for protein binders. Trends Anal Chem. 2023;162:117061.

Jiang CX, Armstrong DW. Use of CE for the determination of binding constants. Electrophoresis. 2010;31:17–27.

Galievsky VA, Stasheuski AS, Krylov SN. Capillary electrophoresis for quantitative studies of biomolecular interactions. Anal Chem. 2015;87:157–171.

Dubsky P, Dvorak M, Ansorge M. Affinity capillary electrophoresis: the theory of electromigration. Anal Bioanal Chem. 2016;408:8623–8641.

Wang LJ, Zhang WM, Shao YL, Zhang DT, Guo GS, Wang XY. Analytical methods for obtaining binding parameters of drug‐protein interactions: A review. Anal Chim Acta. 2022;1219:340012.

Ostergaard J, Jensen H, Hoim R. Use of correction factors in mobility shift affinity capillary electrophoresis for weak analyte—ligand interactions. J Sep Sci. 2009;32:1712–1721.

Stepanova S, Brehova P, Kasicka V. The separation of cyclic diadenosine diphosphorothioate and the diastereomers of its difluorinated derivative and the estimation of the binding constants and ionic mobilities of their complexes with 2‐hydroxypropyl‐β‐cyclodextrin by affinity capillary electrophoresis. Electrophoresis. 2024;45. https://doi.org/10.1002/elps.202300191

Allmendinger A, Dieu LH, Fischer S, Mueller R, Mahler HC, Huwyler J. High‐throughput viscosity measurement using capillary electrophoresis instrumentation and its application to protein formulation. J Pharm Biomed Anal. 2014;99:51–58.

Koval D, Kasicka V, Jiracek J, Collinsova M, Garrow TA. Determination of dissociation constant of phosphinate group in phosphinic pseudopeptides by capillary zone electrophoresis. J Chromatogr B. 2002;770:145–154.

Solinova V, Kasicka V, Koval D, Cesnek M, Holy A. Determination of acid‐base dissociation constants of amino‐ and guanidinopurine nucleotide analogs and related compounds by capillary zone electrophoresis. Electrophoresis. 2006;27:1006–1019.

Ehala S, Dybal J, Makrlik E, Kasicka V. Capillary affinity electrophoresis and ab initio calculation studies of valinomycin complexation with Na+ ion. J Sep Sci. 2009;32:597–604.

Koval D, Kasicka V, Zuskova I. Investigation of the effect of ionic strength of Tris‐acetate background electrolyte on electrophoretic mobilities of mono‐, di‐, and trivalent organic anions by capillary electrophoresis. Electrophoresis. 2005;26:3221–3231.

Ehala S, Marklik E, Toman P, Kasicka V. ACE applied to the quantitative characterization of benzo‐18‐crown‐6‐ether binding with alkali metal ions in a methanol‐water solvent system. Electrophoresis. 2010;31:702–708.

Friedl W, Reijenga JC, Kenndler E. Ionic strength and charge number correction for mobilities of multivalent organic anions in capillary electrophoresis. J Chromatogr A. 1995;709:163–170.

Sazelova P, Koval D, Severa L, Teply F, Vigh G, Kasicka V. Determination of binding constants of multiple charged cyclodextrin complexes by ACE using uncorrected and ionic strength corrected actual mobilities of the species involved. Electrophoresis. 2020;40:523–535.

Moody GJ, Owusu RK, Slawin AMZ, Spencer N, Stoddart JF, Thomas JDR, et al. Noncovalent bonding interactions between tetraphenylborate anions and paraquat and diquat dications. Angew Chem‐Int Ed. 1987;26:890–892.

Duchene D. Cyclodextrins in pharmaceutics, cosmetics, and biomedicine: current and future industrial applications. Hoboken, NJ: John Wiley & Sons, Inc.; 2011.

Kim Y, Das A, Zhang HY, Dutta PK. Zeolite membrane‐based artificial photosynthetic assembly for long‐lived charge separation. J Phys Chem B. 2005;109:6929–6932.

Vitoria P, Beitia JI, Gutierrez‐Zorrilla JM, Saiz ER, Luque A, Insausti M, et al. Tetracyanometalates of Ni, Pd, and Pt with cyclic diquaternary cations of 2,2'‐bipyridine and 1,10‐phenanthroline. A vibrational, crystallographic, and theoretical study of intermolecular weak interactions. Inorg Chem. 2002;41:4396–4404.

Talele HR, Koval D, Severa L, Reyes‐Gutierrez PE, Cisarova I, Sazelova P, et al. Diquats with robust chirality: facile resolution, synthesis of chiral dyes, and application as selectors in chiral analysis. Chem‐Eur J. 2018;24:7601–7604.

Bilek J, Koval D, Sazelova P, Solinova V, Severa L, Gutierrez PER, et al. The separation of the enantiomers of diquats by capillary electrophoresis using randomly sulfated cyclodextrins as chiral selectors. J Sep Sci. 2023, 2300417.

Koval D, Severa L, Adriaenssens L, Vavra J, Teply F, Kasicka V. Chiral analysis of helquats by capillary electrophoresis: Resolution of helical N‐heteroaromatic dications using randomly sulfated cyclodextrins. Electrophoresis. 2011;32:2683–2692.

Dubsky P, Ordogova M, Maly M, Riesova M. CEval: All‐in‐one software for data processing and statistical evaluations in affinity capillary electrophoresis. J Chromatogr A. 2016;1445:158–165.

Erny GL, Bergstrom ET, Goodall DM. Electromigration dispersion in capillary zone electrophoresis—experimental validation of use of the Haarhoff‐Van der Linde function. J Chromatogr A. 2002;959:229–239.

Koval D, Kasicka V, Cottet H. Analysis of glycated hemoglobin A1c by capillary electrophoresis and capillary isoelectric focusing. Anal Biochem. 2011;413:8–15.

Ruzicka M, Cizkova M, Jirasek M, Teply F, Koval D, Kasicka V. Study of deoxyribonucleic acid‐ligand interactions by partial filling affinity capillary electrophoresis. J Chromatogr A. 2014;1349:116–121.

Williams BA, Vigh G. Fast, accurate mobility determination method for capillary electrophoresis. Anal Chem. 1996;68:1174–1180.

Gebauer P, Caslavska J, Thormann W, Bocek P. Prediction of zone patterns in capillary zone electrophoresis with conductivity detection—Concept of the zone conductivity diagram. J Chromatogr A. 1997;772:63–71.

Hruska V, Svobodova J, Benes M, Gas B. A nonlinear electrophoretic model for PeakMaster: Part III. Electromigration dispersion in systems that contain a neutral complex‐forming agent and a fully charged analyte. Theory J Chromatogr A. 2012;1267:102–108.

Benes M, Svobodova J, Hruska V, Dvorak M, Zuskova I, Gas B. A nonlinear electrophoretic model for PeakMaster: Part IV. Electromigration dispersion in systems that contain a neutral complex‐forming agent and a fully charged analyte. Experimental verification. J Chromatogr A. 2012;1267:109–115.

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...