Phosphonium chloride-based deep eutectic solvents inhibit pathogenic Acanthamoeba castellanii belonging to the T4 genotype

. 2025 Feb ; 70 (1) : 101-113. [epub] 20240613

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38869777
Odkazy

PubMed 38869777
DOI 10.1007/s12223-024-01180-1
PII: 10.1007/s12223-024-01180-1
Knihovny.cz E-zdroje

Herein, we investigated the anti-amoebic activity of phosphonium-chloride-based deep eutectic solvents against pathogenic Acanthamoeba castellanii of the T4 genotype. Deep eutectic solvents are ionic fluids composed of two or three substances, capable of self-association to form a eutectic mixture with a melting point lower than each substance. In this study, three distinct hydrophobic deep eutectic solvents were formulated, employing trihexyltetradecylphosphonium chloride as the hydrogen bond acceptor and aspirin, dodecanoic acid, and 4-tert-butylbenzoic acid as the hydrogen bond donors. Subsequently, all three deep eutectic solvents, denoted as DES1, DES2, DES3 formulations, underwent investigations comprising amoebicidal, adhesion, excystation, cytotoxicity, and cytopathogenicity assays. The findings revealed that DES2 was the most potent anti-amoebic agent, with a 94% elimination rate against the amoebae within 24 h at 30 °C. Adhesion assays revealed that deep eutectic solvents hindered amoebae adhesion to human brain endothelial cells, with DES2 exhibiting 88% reduction of adhesion. Notably, DES3 exhibited remarkable anti-excystation properties, preventing 94% of cysts from reverting to trophozoites. In cytopathogenicity experiments, deep eutectic solvent formulations and dodecanoic acid alone reduced amoebae-induced human brain endothelial cell death, with DES2 showing the highest effects. Lactate dehydrogenase assays revealed the minimal cytotoxicity of the tested deep eutectic solvents, with the exception of trihexyltetradecylphosphonium chloride, which exhibited 35% endothelial cell damage. These findings underscore the potential of specific deep eutectic solvents in combating pathogenic Acanthamoeba, presenting promising avenues for further research and development against free-living amoebae.

Zobrazit více v PubMed

Akbar N, Siddiqui R, Khamis M, Ibrahim T, Khan NA (2021) Cationic surfactant–natural clay complex as a novel agent against Acanthamoeba castellanii belonging to the T4 genotype. Eye Contact Lens 47(11):592–597 PubMed DOI

Akbar N, Khan NA, Ibrahim T, Khamis M, Khan AS, Alharbi AM, Alfahemi H, Siddiqui R (2023) Antimicrobial activity of novel deep eutectic solvents. Sci Pharm 91 DOI

Akbar N, Siddiqui R, El-Gamal MI, Zaraei S-O, Saeed BQ, Alawfi BS, Khan NA (2024) Potential anti-amoebic activity of sulfonate-and sulfamate-containing carboxamide derivatives against pathogenic Acanthamoeba castellanii belonging to the genotype T4. Parasitol Int 98 DOI

Al-Akayleh F, Khalid R, Hawash D, Al-Kaissi E, Al-Adham I, Al-Muhtaseb N, Jaber N, Al-Remawi M, Collier P (2022) Antimicrobial potential of natural deep eutectic solvents. Lett Appl Microbiol 75(3):607–615 PubMed DOI

Alonso DA, Baeza A, Chinchilla R, Guillena G, Pastor IM, Ramón DJ (2016) Deep eutectic solvents: the organic reaction medium of the century. J Org Chem 4:612–632

Borase HP, Patil CD, Sauter IP, Rott MB, Patil SV (2013) Amoebicidal activity of phytosynthesized silver nanoparticles and their in vitro cytotoxicity to human cells. FEMS Microbiol Lett 345(2):127–131 PubMed DOI

Corsaro D (2020) Update on Acanthamoeba phylogeny. Parasitol Res 119(10):3327–3338 PubMed DOI

Dai Y, Witkamp G-J, Verpoorte R, Choi YH (2015) Tailoring properties of natural deep eutectic solvents with water to facilitate their applications. Food Chem 187:14–19 PubMed DOI

Delumeau A, Quétel I, Harnais F, Sellin A, Gros O, Talarmin A, Marcelino I (2023) Bacterial microbiota management in free-living amoebae (Heterolobosea lineage) isolated from water: The impact of amoebae identity, grazing conditions, and passage number. Sci Total Environ 900 PubMed DOI

Denet E, Coupat-Goutaland B, Nazaret S, Pélandakis M, Favre-Bonté S (2017) Diversity of free-living amoebae in soils and their associated human opportunistic bacteria. Parasitol Res 116:3151–3162 PubMed DOI

Failoc-Rojas VE, Silva-Díaz H, Maguiña JL, Rodriguez-Morales AJ, Díaz-Velez C, Apolaya-Segura M, Valladares-Garrido MJ (2023) Evidence-based indications for ivermectin in parasitic diseases: an integrated approach to context and challenges in Peru. Parasite Epidemiol Control 23 PubMed DOI PMC

Halder AK, Cordeiro MND (2019) Probing the environmental toxicity of deep eutectic solvents and their components: an in silico modeling approach. ACS Sustainable Chem Eng 7(12):10649–10660 DOI

Hansen BB, Spittle S, Chen B, Poe D, Zhang Y, Klein JM, Horton A, Adhikari L, Zelovich T, Doherty BW (2020) Deep eutectic solvents: a review of fundamentals and applications. Chem Rev 121(3):1232–1285 PubMed DOI

Jeong KM, Lee MS, Nam MW, Zhao J, Jin Y, Lee D-K, Kwon SW, Jeong JH, Lee JJ (2015) Tailoring and recycling of deep eutectic solvents as sustainable and efficient extraction media. J Chromatogr A 1424:10–17 PubMed DOI

Juneidi I, Hayyan M, Hashim MA (2018) Intensification of biotransformations using deep eutectic solvents: overview and outlook. Process Biochem 66:33–60 DOI

Juneidi I, Hayyan M, Mohd Ali OJES, Research P (2016) Toxicity profile of choline chloride-based deep eutectic solvents for fungi and Cyprinus carpio fish. Environ Sci Pollut Res Int 23:7648–7659 DOI

Khan NA (2006) Acanthamoeba: biology and increasing importance in human health. FEMS Microbiol Rev 30(4):564–595 PubMed DOI

Khandelwal S, Tailor YK, Kumar MJ (2016) Deep eutectic solvents (DESs) as eco-friendly and sustainable solvent/catalyst systems in organic transformations. J Mol Liquid 215:345–386 DOI

López-Barona P, Verdú-Expósito C, Martín-Pérez T, Gómez-Casanova N, Lozano-Cruz T, Ortega P, Gómez R, Pérez-Serrano J, Heredero-Bermejo I (2022) Amoebicidal activity of cationic carbosilane dendrons derived with 4-phenylbutyric acid against Acanthamoeba griffini and Acanthamoeba polyphaga trophozoites and cysts. Sci Rep 12(1):14926 PubMed DOI PMC

Lorenzo-Morales J, Khan NA, Walochnik J (2015) An update on Acanthamoeba keratitis: diagnosis, pathogenesis and treatment. Parasit. 22

Maciver SK, Asif M, Simmen MW, Lorenzo-Morales J (2013) A systematic analysis of Acanthamoeba genotype frequency correlated with source and pathogenicity: T4 is confirmed as a pathogen-rich genotype. Eur J Protistol 49(2):217–221 PubMed DOI

Mainberger S, Kindlein M, Bezold F, Elts E, Minceva M, Briesen H (2017) Deep eutectic solvent formation: a structural view using molecular dynamics simulations with classical force fields. Mol Physic 115(9–12):1309–1321 DOI

Marciano-Cabral F, Cabral G (2003) Acanthamoeba spp as agents of disease in humans. Clin Microbiol Rev 16(2):273–307 PubMed DOI PMC

Mbous YP, Hayyan M, Hayyan A, Wong WF, Hashim MA, Looi CY (2017) Applications of deep eutectic solvents in biotechnology and bioengineering—promises and challenges. Biotechnol Adv 35(2):105–134 PubMed DOI

Mouden S, Klinkhamer PG, Choi YH, Leiss KA (2017) Towards eco-friendly crop protection: natural deep eutectic solvents and defensive secondary metabolites. Phytochem Rev 16:935–951 PubMed DOI PMC

Paiva A, Craveiro R, Aroso I, Martins M, Reis RL, Duarte ARC (2014) Natural deep eutectic solvents–solvents for the 21st century. ACS Sustainable Chem Eng 2(5):1063–1071 DOI

Pink R, Hudson A, Mouriès M-A, Bendig M (2005) Opportunities and challenges in antiparasitic drug discovery. Nat Rev Drug Discov 4(9):727–740 PubMed DOI

Radošević K, Bubalo MC, Srček VG, Grgas D, Dragičević TL, Redovniković IR (2015) Evaluation of toxicity and biodegradability of choline chloride based deep eutectic solvents. Ecotoxicol Environ Saf 112:46–53 PubMed DOI

Radošević K, Čanak I, Panić M, Markov K, Bubalo MC, Frece J, Srček VG, Redovniković IR (2018) Antimicrobial, cytotoxic and antioxidative evaluation of natural deep eutectic solvents. Environ Sci Pollut Res Int 25:14188–14196 PubMed DOI

Rice CA, Colon BL, Chen E, Hull MV, Kyle DE (2020) Discovery of repurposing drug candidates for the treatment of diseases caused by pathogenic free-living amoebae. PLoS Negl Trop Dis 14(9) PubMed DOI PMC

Rosas-Hernandez H, Cuevas E, Lantz SM, Paule MG, Ali SF (2018) Isolation and culture of brain microvascular endothelial cells for in vitro blood-brain barrier studies. Methods Mol Biol 1727:315–331 PubMed DOI

Saeed BQ, Hussain K, Akbar N, Khan H, Siddiqui R, Shah RM, Khan NA (2022) Nanovesicles containing curcumin hold promise in the development of new formulations of anti-Acanthamoebic agents. Mol Biochem Parasitol 247 PubMed DOI

Salazar-Ardiles C, Asserella-Rebollo L, Andrade DC (2022) Free-living amoebas in extreme environments: the true survival in our planet. Biomed Res Int 2022:2359883 PubMed DOI PMC

Scheid P (2018) Free-living amoebae as human parasites and hosts for pathogenic microorganisms. Proceeding 2

Schuster FL, Visvesvara GS (2004) Free-living amoebae as opportunistic and non-opportunistic pathogens of humans and animals. Int J Parasitol 34(9):1001–1027 PubMed DOI

Shabardina V, Kischka T, Kmita H, Suzuki Y, Makałowski W (2018) Environmental adaptation of Acanthamoeba castellanii and Entamoeba histolytica at genome level as seen by comparative genomic analysis. Int J Biol Sci 14(3):306 PubMed DOI PMC

Siddiqui R, Aqeel Y, Khan NA (2016) The development of drugs against Acanthamoeba infections. Antimicrob Agents Chemother 60(11):6441–6450 PubMed DOI PMC

Siddiqui R, Makhlouf Z, Akbar N, Khamis M, Ibrahim T, Khan AS, Khan NA (2022) Antiamoebic properties of salicylic acid-based deep eutectic solvents for the development of contact lens disinfecting solutions against Acanthamoeba Mol Biochem Parasitol 250 PubMed DOI

Siddiqui R, Makhlouf Z, Akbar N, Khamis M, Ibrahim T, Khan AS, Khan NA (2023) Antiamoebic properties of methyltrioctylammonium chloride based deep eutectic solvents. Cont Lens Anterior Eye 46(2) PubMed DOI

Silva J, Silva E, Reis R, Duarte A (2019) A closer look in the antimicrobial properties of deep eutectic solvents based on fatty acids. Sustain Chem Pharm 14 DOI

Smith EL, Abbott AP, Ryder KS (2014) Deep eutectic solvents (DESs) and their applications. Chem Rev 114(21):11060–11082 PubMed DOI

Tang B, Row KH (2013) Recent developments in deep eutectic solvents in chemical sciences. Monatsh Chem 144:1427–1454 DOI

Visvesvara GS, Moura H, Schuster FL (2007) Pathogenic and opportunistic free-living amoebae Acanthamoeba spp Balamuthia mandrillaris Naegleria fowleri and Sappinia diploidea. FEMS Immunol Med Microbiol 50(1):1–26 PubMed DOI

Wagle DV, Zhao H, Baker GA (2014) Deep eutectic solvents: sustainable media for nanoscale and functional materials. Acc Chem Res 47(8):2299–2308 PubMed DOI

Wang Y, Jiang L, Zhao Y, Ju X, Wang L, Jin L, Fine RD, Li M (2023) Biological characteristics and pathogenicity of Acanthamoeba Front Microbiol 14:1147077 PubMed DOI PMC

Xu P, Zheng G-W, Zong M-H, Li N, Lou W-Y (2017) Recent progress on deep eutectic solvents in biocatalysis. Bioresour Bioprocess 4:1–18 DOI

Zainal-Abidin MH, Hayyan M, Hayyan A, Jayakumar NS (2017) New horizons in the extraction of bioactive compounds using deep eutectic solvents: a review. Anal Chim Acta 979:1–23 PubMed DOI

Zakrewsky M, Banerjee A, Apte S, Kern TL, Jones MR, Sesto RED, Koppisch AT, Fox DT, Mitragotri S (2016) Choline and geranate deep eutectic solvent as a broad-spectrum antiseptic agent for preventive and therapeutic applications. Adv Healthc Mater 5(11):1282–1289 PubMed DOI

Zhao B-Y, Xu P, Yang F-X, Wu H, Zong M-H, Lou W-Y (2015) Biocompatible deep eutectic solvents based on choline chloride: characterization and application to the extraction of rutin from Sophora japonica ACS Sustainable Chem Eng 3(11):2746–2755 DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...