Structural Optimization of Azacryptands for Targeting Three-Way DNA Junctions
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
ANR-22-CE44-0039-01
Agence Nationale de la Recherche
UB21018.MUB.IS
Plan investissement avenir
2023-077156
Grand Équipement National De Calcul Intensif
LX22NPO5102
National Institute for Cancer Research CZ
PubMed
38873877
DOI
10.1002/anie.202409780
Knihovny.cz E-zdroje
- Klíčová slova
- DNA junctions, NMR, in vitro assays, ligands, molecular dynamics,
- MeSH
- DNA * chemie MeSH
- G-kvadruplexy MeSH
- konformace nukleové kyseliny MeSH
- lidé MeSH
- ligandy MeSH
- molekulární struktura MeSH
- rezonanční přenos fluorescenční energie MeSH
- simulace molekulární dynamiky MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- DNA * MeSH
- ligandy MeSH
Transient melting of the duplex-DNA (B-DNA) during DNA transactions allows repeated sequences to fold into non-B-DNA structures, including DNA junctions and G-quadruplexes. These noncanonical structures can act as impediments to DNA polymerase progression along the duplex, thereby triggering DNA damage and ultimately jeopardizing genomic stability. Their stabilization by ad hoc ligands is currently being explored as a putative anticancer strategy since it might represent an efficient way to inflict toxic DNA damage specifically to rapidly dividing cancer cells. The relevance of this strategy is only emerging for three-way DNA junctions (TWJs) and, to date, no molecule has been recognized as a reference TWJ ligand, featuring both high affinity and selectivity. Herein, we characterize such reference ligands through a combination of in vitro techniques comprising affinity and selectivity assays (competitive FRET-melting and TWJ Screen assays), functional tests (qPCR and Taq stop assays) and structural analyses (molecular dynamics and NMR investigations). We identify novel azacryptands TrisNP-amphi and TrisNP-ana as the most promising ligands, interacting with TWJs with high affinity and selectivity. These ligands represent new molecular tools to investigate the cellular roles of TWJs and explore how they can be exploited in innovative anticancer therapies.
Institut de Chimie Moléculaire ICMUB CNRS UMR6302 9 Avenue Alain Savary 21078 Dijon France
Institut de Pharmacologie et de Biologie Structurale Toulouse France
Zobrazit více v PubMed
S. Nurk, S. Koren, A. Rhie, M. Rautiainen, A. V. Bzikadze, A. Mikheenko et al., Science 2022, 376, 44–53.
S. J. Hoyt, J. M. Storer, et al., Science 2022, 376, eabk3112.
S. Kit, J. Mol. Biol. 1961, 3, IN711–IN712.
J. Thakur, J. Packiaraj, S. Henikoff, Int. J. Mol. Sci. 2021, 22, 4309.
G. Wang, K. M. Vasquez, Nat. Rev. Genet. 2023, 24, 211–234.
W. M. Guiblet, M. A. Cremona, M. Cechova, R. S. Harris, I. Kejnovska, E. Kejnovsky, K. Eckert, F. Chiaromonte, K. D. Makova, Genome Res. 2018, 28, 1767–1778.
A. N. Blackford, S. P. Jackson, Mol. Cell 2017, 66, 801–817.
J. Zell, F. Rota Sperti, S. Britton, D. Monchaud, RSC Chem. Biol. 2021, 2, 47–76;
G. Wang, K. M. Vasquez, DNA Repair 2014, 19, 143–151;
C. Mellor, C. Perez, J. E. Sale, Crit. Rev. Biochem. Mol. Biol. 2022, 57, 412–442;
G. Matos-Rodrigues, J. A. Hisey, A. Nussenzweig, S. M. Mirkin, Mol. Cell 2023, 83, 3622–3641.
K. T. McQuaid, A. Pipier, C. J. Cardin, D. Monchaud, Nucleic Acids Res. 2022, 50, 12636–12656.
Y. Wang, D. J. Patel, Biochem. 1992, 31, 8112–8119.
K. Gehring, J.-L. Leroy, M. Guéron, Nature 1993, 363, 561–565;
S. Tao, Y. Run, D. Monchaud, W. Zhang, Trends Genet. 2024, https://doi.org/10.1016/j.tig.2024.05.011
I. Georgakopoulos-Soares, S. Morganella, N. Jain, M. Hemberg, S. Nik-Zainal, Genome Res. 2018, 28, 1264–1271.
S. Neidle, J. Med. Chem. 2016, 59, 5987–6011;
H. Xu, L. H. Hurley, Bioorg. Med. Chem. Lett. 2022, 77, 129016.
E. Ivens, M. M. D. Cominetti, M. Searcey, Bioorg. Med. Chem. 2022, 69, 116897.
J. Novotna, A. Laguerre, A. Granzhan, M. Pirrotta, M.-P. Teulade-Fichou, D. Monchaud, Org. Biomol. Chem. 2015, 13, 215–222.
K. Duskova, J. Lamarche, S. Amor, C. Caron, N. Queyriaux, M. Gaschard, M.-J. Penouilh, G. de Robillard, D. Delmas, C. H. Devillers, A. Granzhan, M.-P. Teulade-Fichou, M. Chavarot-Kerlidou, B. Therrien, S. Britton, D. Monchaud, J. Med. Chem. 2019, 62, 4456–4466.
K. Duskova, P. Lejault, É. Benchimol, R. Guillot, S. Britton, A. Granzhan, D. Monchaud, J. Am. Chem. Soc. 2020, 142, 424–435.
J. Malina, H. Kostrhunova, P. Scott, V. Brabec, Nucleic Acids Res. 2023, 51, 7174–7183.
A. Alcalde-Ordóñez, N. Barreiro-Piñeiro, B. McGorman, J. Gómez-González, D. Bouzada, F. Rivadulla, M. E. Vázquez, A. Kellett, J. Martínez-Costas, M. V. López, Chem. Sci. 2023, 14, 14082–14091.
J. Zell, K. Duskova, L. Chouh, M. Bossaert, N. Chéron, A. Granzhan, S. Britton, D. Monchaud, Nucleic Acids Res. 2021, 49, 10275–10288.
A. Granzhan, D. Monchaud, N. Saettel, A. Guédin, J.-L. Mergny, M.-P. Teulade-Fichou, J. Nucleic Acids 2010, 2010, 460561;
A. Pruška, J. A. Harrison, A. Granzhan, A. Marchand, R. Zenobi, Anal. Chem. 2023, 95, 14384–14391.
V. Amendola, G. Bergamaschi, A. Miljkovic, Supramol. Chem. 2018, 30, 236–242.
S. S. R. Namashivaya, A. S. Oshchepkov, H. Ding, S. Förster, V. N. Khrustalev, E. A. Kataev, Org. Lett. 2019, 21, 8746–8750.
L. Guyon, M. Pirrotta, K. Duskova, A. Granzhan, M.-P. Teulade-Fichou, D. Monchaud, Nucleic Acids Res. 2018, 46, e16.
J. Jamroskovic, I. Obi, A. Movahedi, K. Chand, E. Chorell, N. Sabouri, DNA Repair 2019, 82, 102678;
J. Mitteaux, P. Lejault, F. Wojciechowski, A. Joubert, J. Boudon, N. Desbois, C. P. Gros, R. H. E. Hudson, J.-B. Boulé, A. Granzhan, D. Monchaud, J. Am. Chem. Soc. 2021, 143, 12567–12577.
M. Gasiorek, H.-J. Schneider, Chem. Eur. J. 2015, 21, 18328–18332;
M.-P. Teulade-Fichou, M. Fauquet, O. Baudoin, J.-P. Vigneron, J.-M. Lehn, Bioorg. Med. Chem. 2000, 8, 215–222;
A. Pipier, A. De Rache, C. Modeste, S. Amrane, E. Mothes-Martin, J.-L. Stigliani, P. Calsou, J.-L. Mergny, G. Pratviel, D. Gomez, Dalton Trans. 2019, 48, 6091–6099.
A. Oleksi, A. G. Blanco, R. Boer, I. Usón, J. Aymamí, A. Rodger, M. J. Hannon, M. Coll, Angew. Chem. Int. Ed. 2006, 45, 1227–1231.
H. Wales, Ind. Eng. Chem. 1922, 14, 317–318.
P. Viskova, D. Krafcik, L. Trantirek, S. Foldynova-Trantirkova, Curr. Protoc. Nucleic Acid Chem. 2019, 76, e71.
A. Granzhan, E. Largy, N. Saettel, M. P. Teulade-Fichou, Chem. Eur. J. 2010, 16, 878–889.