Culinary treatments impact the digestibility and protein quality of edible insects: a case study with Tenebrio molitor and Gryllus assimilis
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
38883861
PubMed Central
PMC11179427
DOI
10.3389/fnut.2024.1399827
Knihovny.cz E-zdroje
- Klíčová slova
- DIAAS, culinary treatment, nutrition, protein content, protein digestibility,
- Publikační typ
- časopisecké články MeSH
The escalating global population is anticipated to intensify the demand for high-quality proteins, necessitating the exploration of alternative protein sources. Edible insects are a promising solution, owing to their nutritional richness and sustainability. However, their digestibility and protein quality, particularly after culinary treatment, remains underexplored. In the present study, we investigated the effects of various culinary treatments on the protein digestibility of two insect species, Tenebrio molitor and Gryllus assimilis. Our findings revealed that culinary treatments such as boiling, roasting, drying, and microwave heating significantly influenced the digestibility of both insect species. Notably, drying emerged as the most effective method, leading to a substantial increase in digestibility. Furthermore, we assessed protein quality using the digestible indispensable amino acid score (DIAAS) and found that the choice of the calculation method significantly influenced the evaluation of protein quality. By including the sum of the anhydrous amino acids, we eliminated the potential overestimation of protein content and obtained a more reliable assessment of protein quality. Our results underscore the importance of culinary treatments and calculation methods in determining the suitability of insects as protein sources for human nutrition.
Zobrazit více v PubMed
Zou X, Liu M, Li X, Pan F, Wu X, Fang X, et al. . Applications of insect nutrition resources in animal production. J Agr Food Res. (2024) 15:100966. doi: 10.1016/j.jafr.2024.100966 DOI
Ariëns RMC, Bastiaan-Net S, van de Berg-Somhorst DBPM, El Bachrioui K, Boudewijn A, van den Dool RTM, et al. . Comparing nutritional and digestibility aspects of sustainable proteins using the INFOGEST digestion protocol. J Funct Foods. (2021) 87:104748. doi: 10.1016/j.jff.2021.104748 DOI
Hawkey KJ, Lopez-Viso C, Brameld JM, Parr T, Salter AM. Insects: a potential source of protein and other nutrients for feed and food. Annu Rev Anim Biosci. (2021) 9:333–54. doi: 10.1146/annurev-animal-021419-083930, PMID: PubMed DOI
FAO . Edible insects. Future prospects for food and feed security. (2013b). Available at: https://www.fao.org/3/i3253e/i3253e.pdf.
Hermans WJH, Senden JM, Churchward-Venne TA, Paulussen KJM, Fuchs CJ, Smeets JSJ, et al. . Insects are a viable protein source for human consumption: from insect protein digestion to postprandial muscle protein synthesis in vivo in humans: a double-blind randomized trial. Am J Clin Nutr. (2021) 114:934–44. doi: 10.1093/ajcn/nqab115, PMID: PubMed DOI PMC
Oonincx DG, van Itterbeeck J, Heetkamp MJ, van den Brand H, van Loon JJ, van Huis A. An exploration on greenhouse gas and ammonia production by insect species suitable for animal or human consumption. PLoS One. (2010) 5:e14445. doi: 10.1371/journal.pone.0014445, PMID: PubMed DOI PMC
van Broekhoven S, Oonincx DG, van Huis A, van Loon JJ. Growth performance and feed conversion efficiency of three edible mealworm species (Coleoptera: Tenebrionidae) on diets composed of organic by-products. J Insect Physiol. (2015) 73:1–10. doi: 10.1016/j.jinsphys.2014.12.005, PMID: PubMed DOI
Bukkens S. Insects in the human diet: nutritional aspects. Ecol Implic Minilivestock. (2005):545–77.
Skotnicka M, Karwowska K, Kłobukowski F, Borkowska A, Pieszko M. Possibilities of the development of edible insect-based foods in Europe. Food Secur. (2021) 10:766. doi: 10.3390/foods10040766, PMID: PubMed DOI PMC
Womeni HM, Linder M, Tiencheu B, Mbiapo FT, Villeneuve P, Fanni J, et al. . Oils of insects and larvae consumed in Africa: potential sources of polyunsaturated fatty acids. Oléagineux Corps Gras Lipides. (2009) 16:230–5. doi: 10.1051/ocl.2009.0279 DOI
Ramos-Elorduy J, Moreno JMP, Prado EE, Perez MA, Otero JL, de Guevara OL. Nutritional value of edible insects from the state of Oaxaca. Mexico J Food Compos Anal. (1997) 10:142–57. doi: 10.1006/jfca.1997.0530 DOI
Kim TK, Yong HI, Kim YB, Kim HW, Choi YS. Edible insects as a protein source: a review of public perception, processing technology, and research trends. Food Sci Anim Resour. (2019) 39:521–40. doi: 10.5851/kosfa.2019.e53, PMID: PubMed DOI PMC
Cardoso C, Afonso C, Lourenço H, Costa S, Nunes ML. Bioaccessibility assessment methodologies and their consequences for the risk–benefit evaluation of food. Trends Food Sci Technol. (2015) 41:5–23. doi: 10.1016/j.tifs.2014.08.008 DOI
Fernández-García E, Carvajal-Lérida I, Pérez-Gálvez A. In vitro bioaccessibility assessment as a prediction tool of nutritional efficiency. Nutr Res. (2009) 29:751–60. doi: 10.1016/j.nutres.2009.09.016, PMID: PubMed DOI
Igual M, García-Segovia P, Martínez-Monzó J. Amino acids release from enriched bread with edible insect or pea protein during in vitro gastrointestinal digestion. Int J Gastronomy Food Sci. (2021) 24:100351. doi: 10.1016/j.ijgfs.2021.100351 DOI
van Huis A, Rumpold B, Maya C, Roos N. Nutritional qualities and enhancement of edible insects. Annu Rev Nutr. (2021) 41:551–76. doi: 10.1146/annurev-nutr-041520-010856, PMID: PubMed DOI
Manditsera FA, Luning PA, Fogliano V, Lakemond CMM. Effect of domestic cooking methods on protein digestibility and mineral bioaccessibility of wild harvested adult edible insects. Food Res Int. (2019) 121:404–11. doi: 10.1016/j.foodres.2019.03.052, PMID: PubMed DOI
Mutungi C, Irungu FG, Nduko J, Mutua F, Affognon H, Nakimbugwe D, et al. . Postharvest processes of edible insects in Africa: a review of processing methods, and the implications for nutrition, safety and new products development. Crit Rev Food Sci Nutr. (2019) 59:276–98. doi: 10.1080/10408398.2017.1365330, PMID: PubMed DOI
Caparros Megido R, Poelaert C, Ernens M, Liotta M, Blecker C, Danthine S, et al. . Effect of household cooking techniques on the microbiological load and the nutritional quality of mealworms (Tenebrio molitor L. 1758). Food Res Int. (2018) 106:503–8. doi: 10.1016/j.foodres.2018.01.002, PMID: PubMed DOI
Opstvedt J, Nygård E, Samuelsen TA, Venturini G, Luzzana U, Mundheim H. Effect on protein digestibility of different processing conditions in the production of fish meal and fish feed. J Sci Food Agric. (2003) 83:775–82. doi: 10.1002/jsfa.1396 DOI
Hęś M. Protein-lipid interactions in different meat systems in the presence of natural antioxidants—a review. Pol J Food Nutr Sci. (2017) 67:5–17. doi: 10.1515/pjfns-2016-0024 DOI
Soladoye OP, Juárez ML, Aalhus JL, Shand P, Estévez M. Protein oxidation in processed meat: mechanisms and potential implications on human health. Compr Rev Food Sci Food Saf. (2015) 14:106–22. doi: 10.1111/1541-4337.12127, PMID: PubMed DOI
Raheem D, Carrascosa C, Oluwole OB, Nieuwland M, Saraiva A, Millán R, et al. . Traditional consumption of and rearing edible insects in Africa, Asia and Europe. Crit Rev Food Sci Nutr. (2019) 59:2169–88. doi: 10.1080/10408398.2018.1440191, PMID: PubMed DOI
da Rosa MC, Thys RCS. Cricket powder (Gryllus assimilis) as a new alternative protein source for gluten-free breads. Innov Food Sci Emerg Technol. (2019) 56:102180. doi: 10.1016/j.ifset.2019.102180 DOI
Brodkorb A, Egger L, Alminger M, Alvito P, Assunção R, Ballance S, et al. . INFOGEST static in vitro simulation of gastrointestinal food digestion. Nat Protoc. (2019) 14:991–1014. doi: 10.1038/s41596-018-0119-1 PubMed DOI
García-García AB, Lamichhane S, Castejón D, Cambero MI, Bertram HC. 1H HR-MAS NMR-based metabolomics analysis for dry-fermented sausage characterization. Food Chem. (2018) 240:514–23. doi: 10.1016/j.foodchem.2017.07.150, PMID: PubMed DOI
Akullo J, Agea J, Obaa B, Acai J, Nakimbugwe D. Nutrient composition of commonly consumed edible insects in the Lango subregion of northern Uganda. Int Food Res J. (2018) 25:159–66.
Rodríguez-Rodríguez M, Barroso FG, Fabrikov D, Sánchez-Muros MJ. In vitro crude protein digestibility of insects: a review. Insects. (2022) 13:13. doi: 10.3390/insects13080682, PMID: PubMed DOI PMC
WHO/FAO . Protein and amino acid requirements in human nutrition: Report of a joint WHO/FAO/UNU expert consultation. (2007) WHO technical report series 935. PubMed
Poelaert C, Francis F, Alabi T, Megido RC, Crahay B, Bindelle J, et al. . Protein value of two insects, subjected to various heat treatments, using growing rats and the protein digestibility-corrected amino acid score. J Insects Food Feed. (2018) 4:77–87. doi: 10.3920/JIFF2017.0003 DOI
Mancini S, Mattioli S, Paolucci S, Fratini F, Dal Bosco A, Tuccinardi T, et al. . Effect of cooking techniques on the in vitro protein digestibility, fatty acid profile, and oxidative status of mealworms (Tenebrio molitor). Front Vet Sci. (2021) 8:675572. doi: 10.3389/fvets.2021.675572, PMID: PubMed DOI PMC
Bax ML, Aubry L, Ferreira C, Daudin JD, Gatellier P, Rémond D, et al. . Cooking temperature is a key determinant of in vitro meat protein digestion rate: investigation of underlying mechanisms. J Agric Food Chem. (2012) 60:2569–76. doi: 10.1021/jf205280y PubMed DOI
Wolfe RR, Rutherfurd SM, Kim IY, Moughan PJ. Protein quality as determined by the digestible indispensable amino acid score: evaluation of factors underlying the calculation. Nutr Rev. (2016) 74:584–99. doi: 10.1093/nutrit/nuw022, PMID: PubMed DOI PMC
FAO . Dietary protein quality evaluation in human nutrition. Report of an FAO expert consultation. Food Nutr Pap. (2013a) 92:1–66. PubMed
Hammer L, Moretti D, Abbühl-Eng L, Kandiah P, Hilaj N, Portmann R, et al. . Mealworm larvae (Tenebrio molitor) and crickets (Acheta domesticus) show high total protein in vitro digestibility and can provide good-to-excellent protein quality as determined by in vitro DIAAS. Front Nutr. (2023) 10:1150581. doi: 10.3389/fnut.2023.1150581, PMID: PubMed DOI PMC
Malla N, Nørgaard JV, Lærke HN, Heckmann LL, Roos N. Some insect species are good-quality protein sources for children and adults: digestible indispensable amino acid score (DIAAS) determined in growing pigs. J Nutr. (2022) 152:1042–51. doi: 10.1093/jn/nxac019, PMID: PubMed DOI
Boulos S, Tännler A, Nyström L. Nitrogen-to-protein conversion factors for edible insects on the Swiss market: T. molitor, A. Domesticus, and L. migratoria. Front Nutr. (2020) 7:89. doi: 10.3389/fnut.2020.00089, PMID: PubMed DOI PMC