Predicting the Accumulation of Ionizable Pharmaceuticals and Personal Care Products in Aquatic and Terrestrial Organisms
Language English Country Great Britain, England Media print-electronic
Document type Journal Article
Grant support
EPA999999
Intramural EPA - United States
MR/S032126/1
Medical Research Council - United Kingdom
PubMed
35920339
PubMed Central
PMC12022761
DOI
10.1002/etc.5451
Knihovny.cz E-resources
- Keywords
- Bioconcentration, environmental modeling, pharmaceuticals,
- MeSH
- Water Pollutants, Chemical * analysis MeSH
- Ecotoxicology MeSH
- Cosmetics * MeSH
- Pharmaceutical Preparations MeSH
- Fishes metabolism MeSH
- Models, Theoretical MeSH
- Aquatic Organisms metabolism MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Water Pollutants, Chemical * MeSH
- Cosmetics * MeSH
- Pharmaceutical Preparations MeSH
The extent to which chemicals bioaccumulate in aquatic and terrestrial organisms represents a fundamental consideration for chemicals management efforts intended to protect public health and the environment from pollution and waste. Many chemicals, including most pharmaceuticals and personal care products (PPCPs), are ionizable across environmentally relevant pH gradients, which can affect their fate in aquatic and terrestrial systems. Existing mathematical models describe the accumulation of neutral organic chemicals and weak acids and bases in both fish and plants. Further model development is hampered, however, by a lack of mechanistic insights for PPCPs that are predominantly or permanently ionized. Targeted experiments across environmentally realistic conditions are needed to address the following questions: (1) What are the partitioning and sorption behaviors of strongly ionizing chemicals among species? (2) How does membrane permeability of ions influence bioaccumulation of PPCPs? (3) To what extent are salts and associated complexes with PPCPs influencing bioaccumulation? (4) How do biotransformation and other elimination processes vary within and among species? (5) Are bioaccumulation modeling efforts currently focused on chemicals and species with key data gaps and risk profiles? Answering these questions promises to address key sources of uncertainty for bioaccumulation modeling of ionizable PPCPs and related contaminants. Environ Toxicol Chem 2024;43:502-512. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
See more in PubMed
Allendorf F, Berger U, Goss KU, & Ulrich N (2019). Partition coefficients of four perfluoroalkyl acid alternatives between bovine serum albumin (BSA) and water in comparison to ten classical perfluoroalkyl acids. Environmental Science: Processes & Impacts, 21(11), 1852–1863. 10.1039/C9EM00290A PubMed DOI
Ankley GT, Brooks BW, Huggett DB, & Sumpter JP (2007). Repeating history: Pharmaceuticals in the environment. Environmental Science and Technology, 41(24), 8211–8217. 10.1021/ES072658J/ASSET/ES072658J.FP.PNG_V03 PubMed DOI
Armitage JM, Arnot JA, Wania F, & Mackay D (2013). Development and evaluation of a mechanistic bioconcentration model for ionogenic organic chemicals in fish. Environmental Toxicology and Chemistry, 32(1), 115–128. 10.1002/etc.2020 PubMed DOI
Armitage JM, Erickson RJ, Luckenbach T, Ng CA, Prosser RS, Arnot JA, Schirmer K, & Nichols JW (2017). Assessing the bioaccumulation potential of ionizable organic compounds: Current knowledge and research priorities. Environmental Toxicology and Chemistry, 36(4), 882–897. 10.1002/etc.3680 PubMed DOI PMC
Armitage JM, Hughes L, Sangion A, & Arnot JA (2021). Development and intercomparison of single and multicompartment physiologically-based toxicokinetic models: Implications for model selection and tiered modeling frameworks. Environment International, 154, 106557. 10.1016/J.ENVINT.2021.106557 PubMed DOI
Arnold CG, Weidenhaupt A, David MM, Muller SR, Haderlein SB, & Schwarzenbach RP (1997). Aqueous speciation and 1-octanol-water partitioning of tributyl-and triphenyltin: Effect of pH and ion composition. Environmental Science & Technology, 31, 2596–2602.
Arnot JA, & Gobas FAPC (2003). A Generic QSAR for assessing the bioaccumulation potential of organic chemicals in aquatic food webs. QSAR & Combinatorial Science, 22(3), 337–345. 10.1002/qsar.200390023 DOI
Arnot JA, & Gobas FAPC (2004). Special Issue honoring Don Mackay. A food web bioaccumulation model for organic chemicals in aquatic ecosystems. Environmental Toxicology and Chemistry, 23(10), 2343–2355. http://laws.justice.gc.ca/en/C-15.31 PubMed
Arnot JA, Mackay D, & Bonnell M (2008). Estimating metabolic biotransformation rates in fish from laboratory data. Environmental Toxicology and Chemistry, 27(2), 341–351. 10.1897/07-310R.1 PubMed DOI
Arnot JA, Mackay D, Parkerton TF, & Bonnell M (2008). A database of fish biotransformation rates for organic chemicals. Environmental Toxicology and Chemistry, 27(11), 2263–2270. 10.1897/08-058.1 PubMed DOI
Arnot JA, Meylan W, Tunkel J, Howard PH, Mackay D, Bonnell M, & Boethling RS (2009). A quantitative structure-activity relationship for predicting metabolic biotransformation rates for organic chemicals in fish. Environmental Toxicology and Chemistry, 28(6), 1168–1177. 10.1897/08-289.1 PubMed DOI
Arnot JA, Toose L, Armitage JM, Embry M, Sangion A, & Hughes L (in press). Special Series. A weight of evidence approach for bioaccumulation assessment. Integrated Environmental Assessment and Management. 10.1002/ieam.4583 PubMed DOI
Ashauer R, Hintermeister A, O’Connor I, Elumelu M, Hollender J, & Escher BI (2012). Significance of xenobiotic metabolism for bioaccumulation kinetics of organic chemicals in Gammarus pulex. Environmental Science & Technology, 46(6), 3498–3508. 10.1021/es204611h PubMed DOI PMC
Baron MG, Mintram KS, Owen SF, Hetheridge MJ, Moody AJ, Purcell WM, Jackson SK, & Jha AN (2017). Pharmaceutical metabolism in fish: Using a 3-D hepatic in vitro model to assess clearance. PLoS One, 12(1), e0168837. 10.1371/JOURNAL.PONE.0168837 PubMed DOI PMC
Bertram MG, Martin JM, McCallum ES, Alton LA, Brand JA, Brooks BW, Cerveny D, Fick J, Ford AT, Hellström G, Michel-angeli M, Nakagawa S, Polverino G, Saaristo M, Sih A, Tan H, Tyler CR, Wong BBM, & Brodin T (2022). Frontiers in quantifying wildlife behavioural responses to chemical pollution. Biological Reviews of the Cambridge Philosophical Society, 97(37), 1346–1364. 10.1111/BRV.12844 PubMed DOI PMC
Bittermann K, Linden L, & Goss KU (2018). Screening tools for the bioconcentration potential of monovalent organic ions in fish. Environmental Science: Processes and Impacts, 20(5), 845–853. 10.1039/C8EM00084K PubMed DOI
Bittermann K, Spycher S, & Goss KU (2016). Comparison of different models predicting the phospholipid-membrane water partition coefficients of charged compounds. Chemosphere, 144, 382–391. 10.1016/J.CHEMOSPHERE.2015.08.065 PubMed DOI
Boxall ABA, Rudd MA, Brooks BW, Caldwell DJ, Choi K, Hickmann S, Innes E, Ostapyk K, Staveley JP, Verslycke T, Ankley GT, Beazley KF, Belanger SE, Berninger JP, Carriquiriborde P, Coors A, DeLeo PC, Dyer SD, Ericson JF, & Van Der Kraak G (2012). Pharmaceuticals and personal care products in the environment: What are the big questions? Environmental Health Perspectives, 120(9), 1221–1229. 10.1289/ehp.1104477 PubMed DOI PMC
Briggs GG, Rigitano RLO, & Bromilow RH (1987). Physico-chemical factors affecting uptake by roots and translocation to shoots of weak acids in barley. Pesticide Science, 19(2), 101–112. 10.1002/PS.2780190203 DOI
Brinch A, Jensen AA, & Christensen F (2018). Risk assessment of fluorinated substances in cosmetic products. The Danish Environmental Protection Agency.
Brooks BW, Chambliss CK, Stanley JK, Ramirez A, Banks KE, Johnson RD, & Lewis RJ (2005). Determination of select anti-depressants in fish from an effluent-dominated stream. Environmental Toxicology and Chemistry, 24(2), 464–469. 10.1897/04-081R.1 PubMed DOI
Brooks BW, & Steele WB (2018). Ecotoxicological perspectives on healthcare and the environment. In Boxall ABA & Kookana RS (Eds.), Healthcare and environmental contaminants (pp. 41–66). Elsevier.
Brown TN, Arnot JA, & Wania F (2012). Iterative fragment selection: A group contribution approach to predicting fish biotransformation half-lives. Environmental Science & Technology, 46(15), 8253–8260. 10.1021/ES301182A/SUPPL_FILE/ES301182A_SI_001.PDF PubMed DOI
Brunetti G, Kodešová R, & Šimůnek J (2019). Modeling the translocation and transformation of chemicals in the soil-plant continuum: A dynamic plant uptake module for the HYDRUS model. Water Resources Research, 55(11), 8967–8989. 10.1029/2019WR025432 DOI
Brunetti G, Kodešová R, Švecová H, Fér M, Nikodem A, Klement A, Grabic R, & Šimůnek J (2022). A novel multiscale biophysical model to predict the fate of ionizable compounds in the soil-plant continuum. Journal of Hazardous Materials, 423, 127008. 10.1016/J.JHAZMAT.2021.127008 PubMed DOI
Burkhard LP (2021). Evaluation of published bioconcentration factor (BCF) and bioaccumulation factor (BAF) data for per- and polyfluoroalkyl substances across aquatic species. Environmental Toxicology and Chemistry, 40(6), 1530–1543. 10.1002/ETC.5010 PubMed DOI
Carter LJ, Agatz A, Kumar A, & Williams M (2020). Translocation of pharmaceuticals from wastewater into beehives. Environment International, 134, 105248. 10.1016/J.ENVINT.2019.105248 PubMed DOI
Carter LJ, Garman CD, Ryan J, Dowle A, Bergstrom E, Thomas-Oates J, & Boxall ABA (2014). Fate and uptake of pharmaceuticals in soil-earthworm systems. Environmental Science & Technology, 48(10), 5955–5963. 10.1021/es500567w PubMed DOI PMC
Carter LJ, Ryan JJ, & Boxall ABA (2016). Effects of soil properties on the uptake of pharmaceuticals into earthworms. Environmental Pollution, 213, 922–931. 10.1016/j.envpol.2016.03.044 PubMed DOI PMC
Carter LJ, Williams M, Boettcher C, & Kookana RS (2015). Uptake of pharmaceuticals influences plant development and affects nutrient and hormone homeostases. Environmental Science & Technology, 49(20), 12509–12518. 10.1021/acs.est.5b03468 PubMed DOI
Carter LJ, Williams M, Martin S, Kamaludeen SPB, & Kookana RS (2018). Sorption, plant uptake and metabolism of benzodiazepines. Science of the Total Environment, 628–629, 18–25. 10.1016/j.scitotenv.2018.01.337 PubMed DOI
Chen F, Gong Z, & Kelly BC (2017). Bioaccumulation behavior of pharmaceuticals and personal care products in adult zebrafish (Danio rerio): Influence of physical-chemical properties and biotransformation. Environmental Science and Technology, 51(19), 11085–11095. 10.1021/ACS.EST.7B02918/SUPPL_FILE/ES7B02918_SI_001.PDF PubMed DOI
Chen Y, Hermens JLM, Jonker MTO, Arnot JA, Armitage JM, Brown T, Nichols JW, Fay KA, & Droge STJ (2016). Which molecular features affect the intrinsic hepatic clearance rate of ionizable organic chemicals in fish. Environmental Science and Technology, 50(23), 12722–12731. 10.1021/ACS.EST.6B03504 PubMed DOI
Connors KA, Du B, Fitzsimmons PN, Hoffman AD, Chambliss CK, Nichols JW, & Brooks BW (2013). Comparative pharmaceutical metabolism by rainbow trout (Oncorhynchus mykiss) liver S9 fractions. Environmental Toxicology and Chemistry, 32(8), 1810–1818. 10.1002/ETC.2240 PubMed DOI
Consoer DM, Hoffman AD, Fitzsimmons PN, Kosian PA, & Nichols JW (2014). Toxicokinetics of perfluorooctanoate (PFOA) in rainbow trout (Oncorhynchus mykiss). Aquatic Toxicology, 156, 65–73. 10.1016/J.AQUATOX.2014.07.022 PubMed DOI
Consoer DM, Hoffman AD, Fitzsimmons NN, Kosian PA, & Nichols JW (2016). Toxicokinetics of perfluorooctane sulfonate in rainbow trout (Oncorhynchus mykiss). Environmental Toxicology and Chemistry, 35(3), 717–727. 10.1002/ETC.3230 PubMed DOI
Daughton CG, & Brooks BW (2011). Active pharmaceutical ingredients and aquatic organisms. In Beyer N & Meador J (Eds.), Environmental contaminants in biota: Interpreting tissue concentrations (2nd ed., pp. 287–347). Taylor & Francis. https://www.semanticscholar.org/paper/%22Active-Pharmaceutical-Ingredients-and-Aquatic-in%3A-Daughton/c1743649b4711d113cc52d08068506694b6c3fb7
Delli Compagni R, Gabrielli M, Polesel F, Turolla A, Trapp S, Vezzaro L, & Antonelli M (2020). Risk assessment of contaminants of emerging concern in the context of wastewater reuse for irrigation: An integrated modelling approach. Chemosphere, 242, 125185. 10.1016/J.CHEMOSPHERE.2019.125185 PubMed DOI
Doucette WJ, Shunthirasingham C, Dettenmaier EM, Zaleski RT, Fantke P, & Arnot JA (2018). A review of measured bioaccumulation data on terrestrial plants for organic chemicals: Metrics, variability, and the need for standardized measurement protocols. Environmental Toxicology and Chemistry, 37(1), 21–33. 10.1002/etc.3992 PubMed DOI
Droge STJ (2018). Membrane–water partition coefficients to aid risk assessment of perfluoroalkyl anions and alkyl sulfates. Environmental Science and Technology, 53(2), 760–770. 10.1021/acs.est.8b05052 PubMed DOI
Droge STJ, Armitage JM, Arnot JA, Fitzsimmons PN, & Nichols JW (2021). Environmental toxicology biotransformation potential of cationic surfactants in fish assessed with rainbow trout liver S9 Fractions. Environmental Toxicology and Chemistry, 40(11), 3123–3136. 10.1002/etc.5189 PubMed DOI PMC
Du B, Haddad SP, Luek A, Scott WC, Saari GN, Kristofco LA, Connors KA, Rash C, Rasmussen JB, Chambliss CK, & Brooks BW (2014). Bioaccumulation and trophic dilution of human pharmaceuticals across trophic positions of an effluent-dependent wadeable stream. Philosophical Transactions of the Royal Society, B: Biological Sciences, 369(1656), 20140058. 10.1098/RSTB.2014.0058 PubMed DOI PMC
Ebert A, Allendorf F, Berger U, Goss KU, & Ulrich N (2020). Membrane/water partitioning and permeabilities of perfluoroalkyl acids and four of their alternatives and the effects on toxicokinetic behavior. Environmental Science & Technology, 54(8), 5051–5061. 10.1021/ACS.EST.0C00175/SUPPL_FILE/ES0C00175_SI_001.PDF PubMed DOI
Erickson RJ, McKim JM, Lien GJ, Hoffman AD, & Batterman SL (2006a). Uptake and elimination of ionizable organic chemicals at fish gills: I. Model formulation, parameterization, and behavior. Environmental Toxicology and Chemistry, 25(6), 1512–1521. 10.1897/05-358R.1 PubMed DOI
Erickson RJ, McKim JM, Lien GJ, Hoffman AD, & Batterman SL (2006b). Uptake and elimination of ionizable organic chemicals at fish gills: II. Observed and predicted effects of ph, alkalinity, and chemical properties. Environmental Toxicology and Chemistry, 25(6), 1522–1532. 10.1897/05-359R.1 PubMed DOI
Escher BI, & Schwarzenbach RP (1996). Partitioning of substituted phenols in liposome–water, biomembrane–water, and octanol–water systems. Environmental Science and Technology, 30(1), 260–270. 10.1021/ES9503084 DOI
Fantke P, & Juraske R (2013). Variability of pesticide dissipation half-lives in plants. Environmental Science and Technology, 47(8), 3548–3562. 10.1021/ES303525X/SUPPL_FILE/ES303525X_SI_001.XLSX PubMed DOI
Fantke P, Juraske R, Antón A, Friedrich R, & Jolliet O (2011). Dynamic multicrop model to characterize impacts of pesticides in food. Environmental Science & Technology, 45(20), 8842–8849. 10.1021/ES201989D/SUPPL_FILE/ES201989D_SI_001.PDF PubMed DOI
Ferreira M, Costa J, & Reis-Henriques MA (2014). ABC transporters in fish species: A review. Frontiers in Physiology, 5, 266. 10.3389/FPHYS.2014.00266/BIBTEX PubMed DOI PMC
Franco A, Ferranti A, Davidsen C, & Trapp S (2010). An unexpected challenge: Ionizable compounds in the REACH chemical space. International Journal of Life Cycle Assessment, 15, 321–325. 10.1007/s11367-010-0165-6 DOI
Fu Q, Rösch A, Fedrizzi D, Vignet C, & Hollender J (2018). Bioaccumulation, Biotransformation, and synergistic effects of binary fungicide mixtures in Hyalella azteca and Gammarus pulex: How different/similar are the two species? Environmental Science and Technology, 52(22), 13491–13500. 10.1021/ACS.EST.8B04057/SUPPL_FILE/ES8B04057_SI_001.PDF PubMed DOI
Fu W, Franco A, & Trapp S (2009). Methods for estimating the bioconcentration factor of ionizable organic chemicals. Environmental Toxicology and Chemistry, 28(7), 1372–1379. 10.1897/08-233.1 PubMed DOI
Fujii Y, Harada KH, & Koizumi A (2013). Occurrence of perfluorinated carboxylic acids (PFCAs) in personal care products and compounding agents. Chemosphere, 93(3), 538–544. 10.1016/J.CHEMOSPHERE.2013.06.049 PubMed DOI
Gomez CF, Constantine L, & Huggett DB (2010). The influence of gill and liver metabolism on the predicted bioconcentration of three pharmaceuticals in fish. Chemosphere, 81(10), 1189–1195. 10.1016/J.CHEMOSPHERE.2010.09.043 PubMed DOI
González García M, Fernández-López C, Polesel F, & Trapp S (2019). Predicting the uptake of emerging organic contaminants in vegetables irrigated with treated wastewater—Implications for food safety assessment. Environmental Research, 172, 175–181. 10.1016/J.ENVRES.2019.02.011 PubMed DOI
Goss KU, Bittermann K, Henneberger L, & Linden L (2018). Equilibrium biopartitioning of organic anions–A case study for humans and fish. Chemosphere, 199, 174–181. 10.1016/J.CHEMOSPHERE.2018.02.026 PubMed DOI
Grayson BT, & Kleier DA (1990). Phloem mobility of xenobiotics. IV. Modelling of pesticide movement in plants. Pesticide Science, 30(1), 67–79. 10.1002/PS.2780300108 DOI
Gredelj A, Polesel F, & Trapp S (2020). Model-based analysis of the uptake of perfluoroalkyl acids (PFAAs) from soil into plants. Chemosphere, 244:125534. 10.1016/J.CHEMOSPHERE.2019.125534 PubMed DOI
Haddad SP, Luek A, Scott WC, Saari GN, Burket SR, Kristofco LA, Corrales J, Rasmussen JB, Chambliss CK, Luers M, Rogers C, & Brooks BW (2018). Spatio-temporal bioaccumulation and trophic transfer of ionizable pharmaceuticals in a semi-arid urban river influenced by snowmelt. Journal of Hazardous Materials, 359, 231–240. 10.1016/J.JHAZMAT.2018.07.063 PubMed DOI
Henneberger L, & Goss KU (2021). Environmental sorption behavior of ionic and ionizable organic chemicals. Reviews of Environmental Contamination and Toxicology, 253, 43–64. 10.1007/398_2019_37 PubMed DOI
Henneberger L, Goss KU, & Endo S (2016a). Equilibrium sorption of structurally diverse organic ions to bovine serum albumin. Environmental Science & Technology, 50(10), 5119–5126. 10.1021/ACS.EST.5B06176/SUPPL_FILE/ES5B06176_SI_001.PDF PubMed DOI
Henneberger L, Goss KU, & Endo S (2016b). Partitioning of organic ions to muscle protein: Experimental data, modeling, and implications for in vivo distribution of organic ions. Environmental Science and Technology, 50(13), 7029–7036. 10.1021/ACS.EST.6B01417/SUPPL_FILE/ES6B01417_SI_001.PDF PubMed DOI
Henneberger L, Klüver N, Mühlenbrink M, & Escher B (2022). Trout and human plasma protein binding of selected pharmaceuticals informs the fish plasma model. Environmental Toxicology and Chemistry, 41(3), 559–568. 10.1002/ETC.4934 PubMed DOI
Horký P, Grabic R, Grabicová K, Brooks BW, Douda K, Slavik O, Hubená P, Santos EMS, & Randák T (2021). Methamphetamine pollution elicits addiction in wild fish. Journal of Experimental Biology, 224(13), jeb242145. 10.1242/JEB.242145/270755 PubMed DOI
Jager T (1998). Mechanistic approach for estimating bioconcentration of organic chemicals in earthworms (Oligochaeta). Environmental Toxicology and Chemistry, 17(10), 2080–2090. 10.1002/ETC.5620171026 DOI
Jeon J, Kurth D, & Hollender J (2013). Biotransformation pathways of biocides and pharmaceuticals in freshwater crustaceans based on structure elucidation of metabolites using high resolution mass spectrometry. Chemical Research in Toxicology, 26(3), 313–324. 10.1021/TX300457F PubMed DOI
Juraske R, Fantke P, Ramírez ACR, & González A (2012). Pesticide residue dynamics in passion fruits: Comparing field trial and modelling results. Chemosphere, 89(7), 850–855. 10.1016/J.CHEMOSPHERE.2012.05.007 PubMed DOI
Karlsson MV, Carter LJ, Agatz A, & Boxall ABA (2017). Novel approach for characterizing pH-dependent uptake of ionizable chemicals in aquatic organisms. Environmental Science & Technology, 51(12), 6965–6971. 10.1021/acs.est.7b01265 PubMed DOI
Kästner M, Nowak KM, Miltner A, Trapp S, & Schäffer A (2014). Classification and modelling of nonextractable residue (NER) formation of xenobiotics in soil–A synthesis. Critical Reviews in Environmental Science and Technology, 44(19), 2107–2171. 10.1080/10643389.2013.828270 DOI
Kierkegaard A, Chen C, Armitage JM, Arnot JA, Droge S, & McLachlan MS (2020). Tissue distribution of several series of cationic surfactants in rainbow trout (Oncorhynchus mykiss) following exposure via water. Environmental Science & Technology, 54(7), 4190–4199. 10.1021/ACS.EST.9B07600/ASSET/IMAGES/LARGE/ES9B07600_0003.JPEG PubMed DOI PMC
Kleier DA (1988). Phloem mobility of xenobiotics I. Mathematical model unifying the weak acid and intermediate permeability theories. Plant Physiology, 86, 803–810. PubMed PMC
Kleinow K, Nichols J, Hayton W, McKim J, & Barron M (2008). Toxicokinetics in fishes. In Di Giulio RT & Hinton DE (Eds.), The toxicology of fishes (pp. 55–152). Taylor & Francis. 10.1201/9780203647295.CH3 DOI
Krause S, & Goss KU (2020). Comparison of a simple and a complex model for BCF prediction using in vitro biotransformation data. Chemosphere, 256, 127048. 10.1016/J.CHEMOSPHERE.2020.127048 PubMed DOI
Kuo DTF, & Di Toro DM (2013). A reductionist mechanistic model for bioconcentration of neutral and weakly polar organic compounds in fish. Environmental Toxicology and Chemistry, 32(9), 2089–2099. 10.1002/ETC.2283 PubMed DOI
Laue H, Gfeller H, Jenner KJ, Nichols JW, Kern S, & Natsch A (2014). Predicting the bioconcentration of fragrance ingredients by rainbow trout using measured rates of in vitro intrinsic clearance. Environmental Science & Technology, 48(16), 9486–9495. 10.1021/ES500904H PubMed DOI
Linden L, Goss KU, & Endo S (2017). 3D-QSAR predictions for bovine serum albumin-water partition coefficients of organic anions using quantum mechanically based descriptors. Environmental Science. Processes & Impacts, 19(3), 261–269. 10.1039/C6EM00555A PubMed DOI
Luckenbach T, Fischer S, & Sturm A (2014). Current advances on ABC drug transporters in fish. Comparative Biochemistry and Physiology. Toxicology & Pharmacology: CBP, 165, 28–52. 10.1016/J.CBPC.2014.05.002 PubMed DOI
Macherius A, Seiwert B, Schröder P, Huber C, Lorenz W, & Reemtsma T (2014). Identification of plant metabolites of environmental contaminants by UPLC-QToF-MS: The in vitro metabolism of triclosan in horseradish. Journal of Agricultural and Food Chemistry, 62(5), 1001–1009. 10.1021/JF404784Q/ASSET/IMAGES/MEDIUM/JF-2013-04784Q_0007.GIF PubMed DOI
Mackay D (1982). Correlation of bioconcentration factors. Environmental Science & Technology, 16(5), 274–278. 10.1021/ES00099A008/ASSET/ES00099A008.FP.PNG_V03 PubMed DOI
Manallack DT (2007). The pKa distribution of drugs: Application to drug discovery. Perspectives in Medicinal Chemistry, 1, 25. 10.1177/1177391x0700100003 PubMed DOI PMC
Mansouri K, Grulke CM, Judson RS, & Williams AJ (2018). OPERA models for predicting physicochemical properties and environmental fate endpoints. Journal of Cheminformatics, 10(1), 1–19. 10.1186/S13321-018-0263-1/FIGURES/1 PubMed DOI PMC
Martin JM, Bertram MG, Saaristo M, Fursdon JB, Hannington SL, Brooks BW, Burket SR, Mole RA, Deal NDS, & Wong BBM (2019). Antidepressants in surface waters: Fluoxetine influences mosquitofish anxiety-related behavior at environmentally relevant levels. Environmental Science & Technology, 53(10), 6035–6043. 10.1021/ACS.EST.9B00944/SUPPL_FILE/ES9B00944_SI_001.PDF PubMed DOI
Martin JW, Mabury SA, Solomon KR, & Muir DCG (2003). Bioconcentration and tissue distribution of perfluorinated acids in rainbow trout (Oncorhynchus mykiss). Environmental Toxicology and Chemistry, 22(1), 196–204. 10.1002/ETC.5620220126 PubMed DOI
Meredith-Williams M, Carter LJ, Fussell R, Raffaelli D, Ashauer R, & Boxall ABA (2012). Uptake and depuration of pharmaceuticals in aquatic invertebrates. Environmental Pollution, 165, 250–258. 10.1016/j.envpol.2011.11.029 PubMed DOI
Miller TH, Bury NR, Owen SF, & Barron LP (2017). Uptake, biotransformation and elimination of selected pharmaceuticals in a freshwater invertebrate measured using liquid chromatography tandem mass spectrometry. Chemosphere, 183, 389–400. 10.1016/J.CHEMOSPHERE.2017.05.083 PubMed DOI PMC
Miller TH, Gallidabino MD, MacRae JI, Owen SF, Bury NR, & Barron LP (2019). Prediction of bioconcentration factors in fish and invertebrates using machine learning. Science of the Total Environment, 648, 80–89. 10.1016/J.SCITOTENV.2018.08.122 PubMed DOI PMC
Miller TH, McEneff GL, Brown RJ, Owen SF, Bury NR, & Barron LP (2015). Pharmaceuticals in the freshwater invertebrate, Gammarus pulex, determined using pulverised liquid extraction, solid phase extraction and liquid chromatography-tandem mass spectrometry. Science of the Total Environment, 511, 153–160. 10.1016/j.scitotenv.2014.12.034 PubMed DOI
Nendza M, Kühne R, Lombardo A, Strempel S, & Schüürmann G (2018). PBT assessment under REACH: Screening for low aquatic bioaccumulation with QSAR classifications based on physic al properties to replace BCF in vivo testing on fish. Science of the Total Environment, 616–617, 97–106. 10.1016/J.SCITOTENV.2017.10.317 PubMed DOI
Newton DW, & Kluza RB (2016). pKa Values of medicinal compounds in pharmacy practice: Annals of Pharmacotherapy, 12(9), 546–554. 10.1177/106002807801200906 DOI
Ng CA, & Hungerbühler K (2013). Bioconcentration of perfluorinated alkyl acids: How important is specific binding? Environmental Science & Technology, 47(13), 7214–7223. 10.1021/ES400981A/SUPPL_FILE/ES400981A_SI_001.PDF PubMed DOI
Nichols JW, Bonnell M, Dimitrov SD, Escher BI, Han X, & Kramer NI (2009). Bioaccumulation assessment using predictive approaches. Integrated Environmental Assessment and Management, 5(4), 577–597. 10.1897/IEAM-2008-088.1 PubMed DOI
Nichols JW, Hoffman AD, Swintek JA, Droge STJ, & Fitzsimmons PN (2021). Addition of phenylmethylsulfonyl fluoride increases the working lifetime of the trout liver S9 substrate depletion assay, resulting in improved detection of low intrinsic clearance rates. Environmental Toxicology and Chemistry, 40(1), 148–161. 10.1002/ETC.4901 PubMed DOI PMC
Nichols JW, Schultz IR, & Fitzsimmons PN (2006). In vitro–in vivo extrapolation of quantitative hepatic biotransformation data for fish: I. A review of methods, and strategies for incorporating intrinsic clearance estimates into chemical kinetic models. Aquatic Toxicology, 78(1), 74–90. 10.1016/J.AQUATOX.2006.01.017 PubMed DOI
Papa E, Van Der Wal L, Arnot JA, & Gramatica P (2014). Metabolic biotransformation half-lives in fish: QSAR modeling and consensus analysis. Science of the Total Environment, 470–471, 1040–1046. 10.1016/j.scitotenv.2013.10.068 PubMed DOI
Paterson S, Mackay D, & McFarlane C (1994). A model of organic chemical uptake by plants from soil and the atmosphere. Environmental Science & Technology, 28(13), 2259–2266. 10.1021/ES00062A009 PubMed DOI
Polesel F, Plosz BG, & Trapp S (2015). From consumption to harvest: Environmental fate prediction of excreted ionizable trace organic chemicals. Water Research, 85, 85–98. 10.1016/j.watres.2015.06.033 PubMed DOI
Popovic M, Zaja R, Fent K, & Smital T (2014). Interaction of environmental contaminants with zebrafish organic anion transporting polypeptide, Oatp1d1 (Slco1d1). Toxicology and Applied Pharmacology, 280(1), 149–158. 10.1016/J.TAAP.2014.07.015 PubMed DOI
Pritchard JB, & James MO (1979). Determinants of the renal handling of 2, 4-dichlorophenoxyacetic acid by winter flounder. Journal of Pharmacology and Experimental Therapeutics, 208, 2. PubMed
Prosser RS, Trapp S, & Sibley PK (2014). Modeling uptake of selected pharmaceuticals and personal care products into food crops from biosolids-amended soil. Environmental Science & Technology, 48(19), 11397–11404. 10.1021/es503067v PubMed DOI
Ramirez AJ, Mottaleb MA, Brooks BW, & Chambliss CK (2007). Analysis of pharmaceuticals in fish using liquid chromatography-tandem mass spectrometry. Analytical Chemistry, 79(8), 3155–3163. 10.1021/AC062215I PubMed DOI
Ratier A, Lopes C, Geffard O, Babut M 2021. The added value of Bayesian inference for estimating biotransformation rates of organic contaminants in aquatic invertebrates. Aquatic Toxicology, 234, 105811. 10.1016/J.AQUATOX.2021.105811 PubMed DOI
Riemenschneider C, Seiwert B, Goldstein M, Al-Raggad M, Salameh E, Chefetz B, & Reemtsma T (2017). An LC-MS/MS method for the determination of 28 polar environmental contaminants and metabolites in vegetables irrigated with treated municipal wastewater. Analytical Methods, 9(8), 1273–1281. 10.1039/C6AY02984A DOI
Rösch A, Anliker S, & Hollender J (2016). How biotransformation influences toxicokinetics of azole fungicides in the aquatic invertebrate Gammarus pulex. Environmental Science & Technology, 50(13), 7175–7188. 10.1021/ACS.EST.6B01301/SUPPL_FILE/ES6B01301_SI_001.PDF PubMed DOI
Sandermann H (1999). Plant metabolism of organic xenobiotics. Status and prospects of the ‘green liver’ concept. In Altman A, Ziv M, & Izhar S (Eds.), Current plant science and biotechnology in agriculture (pp. 321–328). Springer. 10.1007/978-94-011-4661-6_74 DOI
Sandermann H (2004). Bound and unextractable pesticidal plant residues: Chemical characterization and consumer exposure. Pest Management Science, 60(7), 613–623. 10.1002/PS.888 PubMed DOI
Saunders LJ, Fitzsimmons PN, Nichols JW, & Gobas FAPC (2020). In vitro-in vivo extrapolation of hepatic and gastrointestinal biotransformation rates of hydrophobic chemicals in rainbow trout. Aquatic Toxicology, 228, 105629. 10.1016/J.AQUATOX.2020.105629 PubMed DOI PMC
Šimůnek J, Van Genuchten MT, Šejna M, Šimůnek J, & Zone V (2016). Recent developments and applications of the HYDRUS computer software packages. Vadose Zone Journal, 15(7), 1–25. 10.2136/VZJ2016.04.0033 DOI
Sun JM, Kelly BC, Gobas FAPC, & Sunderland EM (2022). A food web bioaccumulation model for the accumulation of per- and polyfluoroalkyl substances (PFAS) in fish: How important is renal elimination? Environmental Science: Processes & Impacts. 10.1039/D2EM00047D PubMed DOI PMC
Trapp S (2000). Modelling uptake into roots and subsequent translocation of neutral and ionisable organic compounds. Pest Management Science, 56(9), 767–778. 10.1002/1526-4998(200009)56:9<767::AID-PS198>3.3.CO;2-H DOI
Trapp S (2004). Plant uptake and transport models for neutral and ionic chemicals. Environmental Science and Pollution Research, 11(1), 33–39. 10.1065/espr2003.08.169 PubMed DOI
Trapp S (2007). Fruit Tree model for uptake of organic compounds from soil and air. SAR and QSAR in Environmental Research, 18(4), 367–387. 10.1080/10629360701303693 PubMed DOI
Trapp S (2009). Bioaccumulation of polar and ionizable compounds in plants. In Devillers J (Ed.), Ecotoxicology modeling, emerging topics in ecotoxicology: Principles, approaches and perspectives (pp. 299–353). Springer. https://orbit.dtu.dk/en/publications/bioaccumulation-of-polar-and-ionizable-compounds-in-plants
Trapp S (2015). Calibration of a plant uptake model with plant- and site-specific data for uptake of chlorinated organic compounds into radish. Environmental Science & Technology, 49(1), 395–402. 10.1021/ES503437P/SUPPL_FILE/ES503437P_SI_001.PDF PubMed DOI
Trapp S, Franco A, & MacKay D (2010). Activity-based concept for transport and partitioning of ionizing organics. Environmental Science & Technology, 44(16), 6123–6129. 10.1021/ES100509X/SUPPL_FILE/ES100509X_SI_001.PDF PubMed DOI
Trapp S, & Matthies M (1995). Generic one-compartment model for uptake of organic chemicals by foliar vegetation. Environmental Science & Technology, 29(9), 2333–2338. 10.1021/es00009a027 PubMed DOI
Trapp S, & Eggen T (2013). Simulation of the plant uptake of organophosphates and other emerging pollutants for greenhouse experiments and field conditions. Environmental Science and Pollution Research, 20, 4018–4029. 10.1007/s11356-012-1337-7 PubMed DOI
Trowell JJ, Gobas FAPC, Moore MM, & Kennedy CJ (2018). Estimating the bioconcentration factors of hydrophobic organic compounds from biotransformation rates using rainbow trout hepatocytes. Archives of Environmental Contamination and Toxicology, 75, 295–305. 10.1007/s00244-018-0508-z PubMed DOI
Veith GD, DeFoe DL, & Bergstedt BV (1979). Measuring and estimating the bioconcentration factor of chemicals in fish. Journal of the Fisheries Board of Canada, 36(9), 1040–1048. 10.1139/F79-146 DOI
Veseli M, Rožman M, Vilenica M, Petrović M, & Previšić A (2022). Bioaccumulation and bioamplification of pharmaceuticals and endocrine disruptors in aquatic insects. Science of the Total Environment, 838, 156208. 10.1016/J.SCITOTENV.2022.156208 PubMed DOI
Wang Z, Walker GW, Muir DCG, & Nagatani-Yoshida K (2020). Toward a global understanding of chemical pollution: A first comprehensive analysis of national and regional chemical inventories. Environmental Science & Technology, 54, 2575–2584. 10.1021/acs.est.9b06379 PubMed DOI
Whitehead HD, Venier M, Wu Y, Eastman E, Urbanik S, Diamond ML, Shalin A, Schwartz-Narbonne H, Bruton TA, Blum A, Wang Z, Green M, Tighe M, Wilkinson JT, Mcguinness S, & Peaslee GF (2021). Fluorinated compounds in North American cosmetics. Environmental Science & Technology Letters, 8, 538–544. 10.1021/acs.estlett.1c00240 DOI
Zhang L, Brooks BW, Liu F, Zhou Z, Li H, & You J (in press). Human apparent volume of distribution predicts bioaccumulation of ionizable organic chemicals in zebrafish embryos. Environmental Science & Technology. 10.1021/ACS.EST.2C03421 PubMed DOI
Zhao JL, Furlong ET, Schoenfuss HL, Kolpin DW, Bird KL, Feifarek DJ, Schwab EA, & Ying GG (2017). Uptake and disposition of select pharmaceuticals by bluegill exposed at constant concentrations in a flow-through aquatic exposure system. Environmental Science & Technology, 51(8), 4434–4444. 10.1021/ACS.EST.7B00604/SUPPL_FILE/ES7B00604_SI_001.PDF PubMed DOI
ECHA European Chemical Agency. (2017). Guidance on Information Requirements and Chemical Safety Assessment, Chapter R.11: Endpoint specific guidance (PBT/vPvB assessment), version 3.0, June 2017.