Comparison of Machine Learning Algorithms Fed with Mobility-Related and Baropodometric Measurements to Identify Temporomandibular Disorders
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, srovnávací studie
PubMed
38894437
PubMed Central
PMC11175253
DOI
10.3390/s24113646
PII: s24113646
Knihovny.cz E-zdroje
- Klíčová slova
- clinical assessment, inertial sensors, machine learning, pressure platform, temporomandibular disorder,
- MeSH
- algoritmy * MeSH
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- nemoci temporomandibulárního kloubu * diagnóza patofyziologie MeSH
- rozhodovací stromy MeSH
- strojové učení * MeSH
- support vector machine MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH
Temporomandibular disorders (TMDs) refer to a group of conditions that affect the temporomandibular joint, causing pain and dysfunction in the jaw joint and related muscles. The diagnosis of TMDs typically involves clinical assessment through operator-based physical examination, a self-reported questionnaire and imaging studies. To objectivize the measurement of TMD, this study aims at investigating the feasibility of using machine-learning algorithms fed with data gathered from low-cost and portable instruments to identify the presence of TMD in adult subjects. Through this aim, the experimental protocol involved fifty participants, equally distributed between TMD and healthy subjects, acting as a control group. The diagnosis of TMD was performed by a skilled operator through the typical clinical scale. Participants underwent a baropodometric analysis by using a pressure matrix and the evaluation of the cervical mobility through inertial sensors. Nine machine-learning algorithms belonging to support vector machine, k-nearest neighbours and decision tree algorithms were compared. The k-nearest neighbours algorithm based on cosine distance was found to be the best performing, achieving performances of 0.94, 0.94 and 0.08 for the accuracy, F1-score and G-index, respectively. These findings open the possibility of using such methodology to support the diagnosis of TMDs in clinical environments.
Department of Human Sciences Università Telematica Degli Studi IUL 50122 Florence Italy
Department of Rehabilitation Faculty of Medicine University of Ostrava 00183 Rome Italy
Faculty of Physical Education and Sport Ovidius University of Constanta 900029 Constanta Romania
Zobrazit více v PubMed
Romero-Reyes M., Uyanik J.M. Orofacial Pain Management: Current Perspectives. J. Pain Res. 2014;7:99–115. doi: 10.2147/JPR.S37593. PubMed DOI PMC
Ohrbach R., Dworkin S.F. The Evolution of TMD Diagnosis. J. Dent. Res. 2016;95:1093–1101. doi: 10.1177/0022034516653922. PubMed DOI PMC
Mogil J.S. Pain Genetics: Past, Present and Future. Trends Genet. 2012;28:258–266. doi: 10.1016/j.tig.2012.02.004. PubMed DOI
Greenbaum T., Dvir Z., Reiter S., Winocur E. Cervical Flexion-Rotation Test and Physiological Range of Motion—A Comparative Study of Patients with Myogenic Temporomandibular Disorder versus Healthy Subjects. Musculoskelet. Sci. Pract. 2017;27:7–13. doi: 10.1016/j.msksp.2016.11.010. PubMed DOI
List T., Axelsson S. Management of TMD: Evidence from Systematic Reviews and Meta-Analyses. J. Oral Rehabil. 2010;37:430–451. doi: 10.1111/j.1365-2842.2010.02089.x. PubMed DOI
Suenaga S., Nagayama K., Nagasawa T., Indo H., Majima H.J. The Usefulness of Diagnostic Imaging for the Assessment of Pain Symptoms in Temporomandibular Disorders. Jpn. Dent. Sci. Rev. 2016;52:93–106. doi: 10.1016/j.jdsr.2016.04.004. PubMed DOI PMC
Robinson de Senna B., Kelma dos Santos Silva V., Petruceli Franca J., Silva Marques L., Pereira L.J. Imaging Diagnosis of the Temporomandibular Joint: Critical Review of Indications and New Perspectives. Oral Radiol. 2006;25:8698.
Schiffman E., Ohrbach R. Executive Summary of the Diagnostic Criteria for Temporomandibular Disorders for Clinical and Research Applications. J. Am. Dent. Assoc. 2016;147:438–445. doi: 10.1016/j.adaj.2016.01.007. PubMed DOI PMC
Steenks M., Türp J., de Wijer A. Reliability and Validity of the Diagnostic Criteria for Temporomandibular Disorders Axis I in Clinical and Research Settings: A Critical Appraisal. J. Oral Facial Pain Headache. 2018;32:7–18. doi: 10.11607/ofph.1704. PubMed DOI
Steenks M.H., Turp J.C., Habil M.D., Anton de Wijer R.P.T., Steenks M.H. Reliability and Validity of the DC/TMD Axis I. J. Oral Facial Pain Headache. 2018;32:27–28. doi: 10.11607/ofph.2018.1.ar. PubMed DOI
Walczyńska-Dragon K., Baron S., Nitecka-Buchta A., Tkacz E. Correlation between TMD and Cervical Spine Pain and Mobility: Is the Whole Body Balance TMJ Related? BioMed Res. Int. 2014;2014:582414. doi: 10.1155/2014/582414. PubMed DOI PMC
Grondin F., Hall T., Laurentjoye M., Ella B. Upper Cervical Range of Motion Is Impaired in Patients with Temporomandibular Disorders. Cranio®. 2015;33:91–99. doi: 10.1179/0886963414Z.00000000053. PubMed DOI
Nota A., Tecco S., Ehsani S., Padulo J., Baldini A. Postural Stability in Subjects with Temporomandibular Disorders and Healthy Controls: A Comparative Assessment. J. Electromyogr. Kinesiol. 2017;37:21–24. doi: 10.1016/j.jelekin.2017.08.006. PubMed DOI
Souza J.A., Pasinato F., Corrêa E.C.R., da Silva A.M.T. Global Body Posture and Plantar Pressure Distribution in Individuals with and without Temporomandibular Disorder: A Preliminary Study. J. Manip. Physiol. Ther. 2014;37:407–414. doi: 10.1016/j.jmpt.2014.04.003. PubMed DOI
Scharnweber B., Adjami F., Schuster G., Kopp S., Natrup J., Erbe C., Ohlendorf D. Influence of Dental Occlusion on Postural Control and Plantar Pressure Distribution. Cranio®. 2017;35:358–366. doi: 10.1080/08869634.2016.1244971. PubMed DOI
Cuenca-Martínez F., Herranz-Gómez A., Madroñero-Miguel B., Reina-Varona Á., La Touche R., Angulo-Díaz-Parreño S., Pardo-Montero J., del Corral T., López-de-Uralde-Villanueva I. Craniocervical and Cervical Spine Features of Patients with Temporomandibular Disorders: A Systematic Review and Meta-Analysis of Observational Studies. J. Clin. Med. 2020;9:2806. doi: 10.3390/jcm9092806. PubMed DOI PMC
Rocha C.P., Croci C.S., Caria P.H.F. Is There Relationship between Temporomandibular Disorders and Head and Cervical Posture? A Systematic Review. J. Oral Rehabil. 2013;40:875–881. doi: 10.1111/joor.12104. PubMed DOI
Sambataro S., Cervino G., Bocchieri S., La Bruna R., Cicciù M. TMJ Dysfunctions Systemic Implications and Postural Assessments: A Review of Recent Literature. J. Funct. Morphol. Kinesiol. 2019;4:58. doi: 10.3390/jfmk4030058. PubMed DOI PMC
Claudino J.G., Capanema D.d.O., de Souza T.V., Serrão J.C., Machado Pereira A.C., Nassis G.P. Current Approaches to the Use of Artificial Intelligence for Injury Risk Assessment and Performance Prediction in Team Sports: A Systematic Review. Sports Med. Open. 2019;5:28. doi: 10.1186/s40798-019-0202-3. PubMed DOI PMC
Chidambaram S., Maheswaran Y., Patel K., Sounderajah V., Hashimoto D.A., Seastedt K.P., McGregor A.H., Markar S.R., Darzi A. Using Artificial Intelligence-Enhanced Sensing and Wearable Technology in Sports Medicine and Performance Optimisation. Sensors. 2022;22:6920. doi: 10.3390/s22186920. PubMed DOI PMC
Taborri J., Molinaro L., Santospagnuolo A., Vetrano M., Vulpiani M.C., Rossi S. A Machine-Learning Approach to Measure the Anterior Cruciate Ligament Injury Risk in Female Basketball Players. Sensors. 2021;21:3141. doi: 10.3390/s21093141. PubMed DOI PMC
Reda B., Contardo L., Prenassi M., Guerra E., Derchi G., Marceglia S. Artificial intelligence to support early diagnosis of temporomandibular disorders: A preliminary case study. J. Oral Rehabil. 2023;50:31–38. doi: 10.1111/joor.13383. PubMed DOI
Lee K.-S., Jha N., Kim Y.-J. Risk Factor Assessments of Temporomandibular Disorders via Machine Learning. Sci. Rep. 2021;11:19802. doi: 10.1038/s41598-021-98837-5. PubMed DOI PMC
Małgorzata P., Małgorzata K.-M., Karolina C., Gala A. Diagnostic of Temporomandibular Disorders and Other Facial Pain Conditions—Narrative Review and Personal Experience. Medicina. 2020;56:472. doi: 10.3390/medicina56090472. PubMed DOI PMC
Schiffman E., Ohrbach R., Truelove E., Look J., Anderson G., Goulet J.-P., List T., Svensson P., Gonzalez Y., Lobbezoo F., et al. Diagnostic Criteria for Temporomandibular Disorders (DC/TMD) for Clinical and Research Applications: Recommendations of the International RDC/TMD Consortium Network and Orofacial Pain Special Interest Group. J. Oral Facial Pain Headache. 2014;28:6–27. doi: 10.11607/jop.1151. PubMed DOI PMC
Dworkin S.F., Sherman J., Mancl L., Ohrbach R., LeResche L., Truelove E. Reliability, Validity, and Clinical Utility of the Research Diagnostic Criteria for Temporomandibular Disorders Axis II Scales: Depression, Non-Specific Physical Symptoms, and Graded Chronic Pain. J. Orofac. Pain. 2002;16:207–220. PubMed
Kroenke K., Wu J., Yu Z., Bair M.J., Kean J., Stump T., Monahan P.O. Patient Health Questionnaire Anxiety and Depression Scale: Initial Validation in Three Clinical Trials. Psychosom. Med. 2016;78:716–727. doi: 10.1097/PSY.0000000000000322. PubMed DOI PMC
Hawrylak A., Brzeźna A., Chromik K. Distribution of Plantar Pressure in Soccer Players. Int. J. Environ. Res. Public Health. 2021;18:4173. doi: 10.3390/ijerph18084173. PubMed DOI PMC
Matla J., Filar-Mierzwa K., Ścisłowska-Czarnecka A., Jankowicz-Szymańska A., Bac A. The Influence of the Physiotherapeutic Program on Selected Static and Dynamic Foot Indicators and the Balance of Elderly Women Depending on the Ground Stability. Int. J. Environ. Res. Public Health. 2021;18:4660. doi: 10.3390/ijerph18094660. PubMed DOI PMC
Molinaro L., Taborri J., Pauletto D., Guerra V., Molinaro D., Sicari G., Regina A., Guerra E., Rossi S. Measuring the Immediate Effects of High-Intensity Functional Training on Motor, Cognitive and Physiological Parameters in Well-Trained Adults. Sensors. 2023;23:3937. doi: 10.3390/s23083937. PubMed DOI PMC
Molinaro L., Taborri J., Rossi S. Baropodometric Analysis in Different Feet Positions: Reliability and Repeatability Evaluation; Proceedings of the 2021 IEEE International Workshop on Metrology for Industry 4.0 & IoT (MetroInd4.0&IoT); Rome, Italy. 7–9 June 2021; pp. 295–300.
Russo L., Panessa T., Bartolucci P., Raggi A., Migliaccio G.M., Larion A., Padulo J. Elastic Taping Application on the Neck: Immediate and Short-Term Impacts on Pain and Mobility of Cervical Spine. J. Funct. Morphol. Kinesiol. 2023;8:156. doi: 10.3390/jfmk8040156. PubMed DOI PMC
Ohrbach R., Gonzalez Y., List T., Michelotti A., Shiffman E. Diagnostic Criteria for Temporomandibular Disorders (DC/TMD) Clinical Examination Protoco. 2014. [(accessed on 2 February 2024)]. Available online: www.rdc-tmdinternational.org.
Mahony R., Hamel T., Pflimin J.-M. Non-Linear Complementary Filters on the Special Orthogonal Group. IEEE Trans. Autom. Control Inst. Electr. Electron. Eng. 2008;53:1203–1217. doi: 10.1080/00207179.2012.693951. DOI
Preece S.J., Paul L., Kenney J., Meijer K., Crompton R.H., Goulermas J.Y., Kenney L.P.J., Howard D., Crompton R. Activity Identification Using Body-Mounted Sensors—A Review of Classification Techniques. Physiol. Meas. 2009;30:1–33. doi: 10.1088/0967-3334/30/4/R01. PubMed DOI
Hearst M.A., Dumais S.T., Osuna E., Platt J., Scholkopf B. Support Vector Machines. IEEE Intell. Syst. Their Appl. 1998;13:18–28. doi: 10.1109/5254.708428. DOI
Altman N.S. An Introduction to Kernel and Nearest-Neighbor Nonparametric Regression. Am. Stat. 1992;46:175–185. doi: 10.1080/00031305.1992.10475879. DOI
Taborri J., Scalona E., Palermo E., Rossi S., Cappa P. Validation of Inter-Subject Training for Hidden Markov Models Applied to Gait Phase Detection in Children with Cerebral Palsy. Sensors. 2015;15:24514. doi: 10.3390/s150924514. PubMed DOI PMC
Andrés Crespo Reinoso P., Ruiz Delgado E., Jerez Robalino J. Temporomandibular Joint-Surgical Reconstruction and Managements. IntechOpen; London, UK: 2023. Biomechanics of the Temporomandibular Joint.
Martínez-Nova A., Sánchez-Rodríguez R., Cuevas-García J.C., Sánchez-Barrado E. Estudio Baropodométrico de Los Valores de Presión Plantar En Pies No Patológicos. Rehabilitación. 2007;41:155–160. doi: 10.1016/S0048-7120(07)75509-3. DOI
Iacob S.M., Chisnoiu A.M., Buduru S.D., Berar A., Fluerasu M.I., Iacob I., Objelean A., Studnicska W., Viman L.M. Plantar Pressure Variations Induced by Experimental Malocclusion—A Pilot Case Series Study. Healthcare. 2021;9:599. doi: 10.3390/healthcare9050599. PubMed DOI PMC
Perinetti G., Türp J.C., Primožič J., Di Lenarda R., Contardo L. Associations between the Masticatory System and Muscle Activity of Other Body Districts. A Meta-Analysis of Surface Electromyography Studies. J. Electromyogr. Kinesiol. 2011;21:877–884. doi: 10.1016/j.jelekin.2011.05.014. PubMed DOI
O’Leary S., Falla D., Elliott J.M., Jull G. Muscle Dysfunction in Cervical Spine Pain: Implications for Assessment and Management. J. Orthop. Sports Phys. Ther. 2009;39:324–333. doi: 10.2519/jospt.2009.2872. PubMed DOI
Hartmann F., Cucchi G. Les Dysfonctions Cranio-Mandibulaires. 1st ed. Volume 2 Springer; Berlin/Heidelberg, Germany: 1993.
Haldeman S., Dagenais S. Cervicogenic Headaches. Spine J. 2001;1:31–46. doi: 10.1016/S1529-9430(01)00024-9. PubMed DOI
Amaral F.A., Dall’Agnol S.M., Socolovski G., Kich C., Franco G.C.N., Bortoluzzi M.C. Cervical Spine Range of Motion, Posture and Electromyographic Activity of Masticatory Muscles in Temporomandibular Disorders. Fisioter. Mov. 2020;33:e003325. doi: 10.1590/1980-5918.033.ao25. DOI
Tjärnberg A., Mahmood O., Jackson C., Saldi G.-A., Cho K., Christiaen L., Bonneau R. Optimal Tuning of Weighted KNN- and Diffusion-Based Methods for Denoising Single Cell Genomics Data. PLoS Comput. Biol. 2021;17:e1008569. doi: 10.1101/2020.02.28.970202. PubMed DOI PMC
Taunk K., De S., Verma S., Swetapadma A. A Brief Review of Nearest Neighbor Algorithm for Learning and Classification; Proceedings of the 2019 International Conference on Intelligent Computing and Control Systems (ICCS), IEEE; Madurai, India. 15–17 May 2019; pp. 1255–1260.
Mannini A., Sabatini A.M. Machine Learning Methods for Classifying Human Physical Activity from On-Body Accelerometers. Sensors. 2010;10:1154–1175. doi: 10.3390/s100201154. PubMed DOI PMC
Palmer J., Durham J. Temporomandibular Disorders. BJA Educ. 2021;21:44–50. doi: 10.1016/j.bjae.2020.11.001. PubMed DOI PMC