• This record comes from PubMed

Diabetic myocardial disorder. A clinical consensus statement of the Heart Failure Association of the ESC and the ESC Working Group on Myocardial & Pericardial Diseases

. 2024 Sep ; 26 (9) : 1893-1903. [epub] 20240619

Language English Country Great Britain, England Media print-electronic

Document type Consensus Development Conference, Journal Article

The association between type 2 diabetes mellitus (T2DM) and heart failure (HF) has been firmly established; however, the entity of diabetic myocardial disorder (previously called diabetic cardiomyopathy) remains a matter of debate. Diabetic myocardial disorder was originally described as the occurrence of myocardial structural/functional abnormalities associated with T2DM in the absence of coronary heart disease, hypertension and/or obesity. However, supporting evidence has been derived from experimental and small clinical studies. Only a minority of T2DM patients are recognized as having this condition in the absence of contributing factors, thereby limiting its clinical utility. Therefore, this concept is increasingly being viewed along the evolving HF trajectory, where patients with T2DM and asymptomatic structural/functional cardiac abnormalities could be considered as having pre-HF. The importance of recognizing this stage has gained interest due to the potential for current treatments to halt or delay the progression to overt HF in some patients. This document is an expert consensus statement of the Heart Failure Association of the ESC and the ESC Working Group on Myocardial & Pericardial Diseases. It summarizes contemporary understanding of the association between T2DM and HF and discuses current knowledge and uncertainties about diabetic myocardial disorder that deserve future research. It also proposes a new definition, whereby diabetic myocardial disorder is defined as systolic and/or diastolic myocardial dysfunction in the presence of diabetes. Diabetes is rarely exclusively responsible for myocardial dysfunction, but usually acts in association with obesity, arterial hypertension, chronic kidney disease and/or coronary artery disease, causing additive myocardial impairment.

Amsterdam University Medical Centers Amsterdam The Netherlands

Berlin Institute of Health at Charité Center for Regenerative Therapies Universitätsmedizin Berlin Berlin Germany

Cardiology San Raffaele Cassino Hospital Cassino Italy

Cardiology University Department RCCS Policlinico San Donato San Donato Milanese Italy

Cardiovascular Research Group Keele University Keele UK

Center for Stroke Research Berlin Charité Universitätsmedizin Berlin Berlin Germany

Department of Biomedical Sciences for Health University of Milan Milan Italy

Department of Cardiology University Clinical Centre of Serbia Belgrade Serbia

Department of Endocrinology University Clinical Centre of Serbia Belgrade Serbia

Department of Human Sciences and Promotion of Quality of Life San Raffaele Open University of Rome Rome Italy

Department of Internal Medicine School of Medicine Charles University and General University Hospital Prague Czech Republic

Deutsches Herzzentrum der Charité Department of Cardiology Partner Site Berlin Charité Universitätsmedizin Berlin Berlin Germany

Diabetes Research Group e 5 at Munich Helmholtz Center Munich Germany

Division of Clinical Physiology Department of Cardiology Faculty of Medicine University of Debrecen Debrecen Hungary

Faculty of Medicine University of Belgrade Belgrade Serbia

Heart Research Institute Sydney NSW Australia

Institute of Cardiology ASST Spedali Civili Department of Medical and Surgical Specialties Radiological Sciences and Public Health University of Brescia Brescia Italy

IRCCS MultiMedica Milan Italy

Polyclinique d'Aubervilliers Aubervilliers and Paris Nord University Bobigny France

School of Cardiovascular and Metabolic Health University of Glasgow Glasgow UK

Serbian Academy of Sciences and Arts Belgrade Serbia

Unit of Cardiology Karolinska Institute and Karolinska University Hospital Stockholm Sweden

See more in PubMed

International Diabetes Federation. IDF Diabetes Atlas 2022 Reports. Available from: https://diabetesatlas.org/2022‐reports/

Wong ND, Sattar N. Cardiovascular risk in diabetes mellitus: Epidemiology, assessment and prevention. Nat Rev Cardiol 2023;20:685–695. https://doi.org/10.1038/s41569‐023‐00877‐z

Shah AD, Langenberg C, Rapsomaniki E, Denaxas S, Pujades‐Rodriguez M, Gale CP, et al. Type 2 diabetes and incidence of cardiovascular diseases: A cohort study in 1.9 million people. Lancet Diabetes Endocrinol 2015;3:105–113. https://doi.org/10.1016/S2213‐8587(14)70219‐0

He J, Ogden LG, Bazzano LA, Vupputuri S, Loria C, Whelton PK. Risk factors for congestive heart failure in US men and women: NHANES I epidemiologic follow‐up study. Arch Intern Med 2001;161:996–1002. https://doi.org/10.1001/archinte.161.7.996

Kannel WB, McGee DL. Diabetes and cardiovascular disease. The Framingham study. JAMA 1979;241:2035–2038. https://doi.org/10.1001/jama.241.19.2035

Kristensen SL, Preiss D, Jhund PS, Squire I, Cardoso JS, Merkely B, et al.; PARADIGM‐HF Investigators and Committees. Risk related to pre‐diabetes mellitus and diabetes mellitus in heart failure with reduced ejection fraction: Insights from Prospective Comparison of ARNI with ACEI to Determine Impact on Global Mortality and Morbidity in Heart Failure trial. Circ Heart Fail 2016;9:e002560. https://doi.org/10.1161/CIRCHEARTFAILURE.115.002560

Kristensen SL, Mogensen UM, Jhund PS, Petrie MC, Preiss D, Win S, et al. Clinical and echocardiographic characteristics and cardiovascular outcomes according to diabetes status in patients with heart failure and preserved ejection fraction: A report from the I‐Preserve trial (Irbesartan in Heart Failure With Preserved Ejection Fraction). Circulation 2017;135:724–735. https://doi.org/10.1161/CIRCULATIONAHA.116.024593

Rubler S, Dlugash J, Yuceoglu YZ, Kumral T, Branwood AW, Grishman A. New type of cardiomyopathy associated with diabetic glomerulosclerosis. Am J Cardiol 1972;30:595–602. https://doi.org/10.1016/0002‐9149(72)90595‐4

Seferović PM, Paulus WJ. Clinical diabetic cardiomyopathy: A two‐faced disease with restrictive and dilated phenotypes. Eur Heart J 2015;36:1718–1727. https://doi.org/10.1093/eurheartj/ehv134

Boudina S, Abel ED. Diabetic cardiomyopathy revisited. Circulation 2007;115:3213–3223. https://doi.org/10.1161/CIRCULATIONAHA.106.679597

Miki T, Yuda S, Kouzu H, Miura T. Diabetic cardiomyopathy: Pathophysiology and clinical features. Heart Fail Rev 2013;18:149–166. https://doi.org/10.1007/s10741‐012‐9313‐3

Lee MMY, McMurray JJV, Lorenzo‐Almorós A, Kristensen SL, Sattar N, Jhund PS, et al. Diabetic cardiomyopathy. Heart 2019;105:337–345. https://doi.org/10.1136/heartjnl‐2016‐310342

Bozkurt B, Coats AJS, Tsutsui H, Abdelhamid CM, Adamopoulos S, Albert N, et al. Universal definition and classification of heart failure: A report of the Heart Failure Society of America, Heart Failure Association of the European Society of Cardiology, Japanese Heart Failure Society and Writing Committee of the Universal Definition of Heart Failure: Endorsed by the Canadian Heart Failure Society, Heart Failure Association of India, Cardiac Society of Australia and New Zealand, and Chinese Heart Failure Association. Eur J Heart Fail 2021;23:352–380. https://doi.org/10.1002/ejhf.2115

Huelsmann M, Neuhold S, Resl M, Strunk G, Brath H, Francesconi C, et al. PONTIAC (NT‐proBNP selected prevention of cardiac events in a population of diabetic patients without a history of cardiac disease): A prospective randomized controlled trial. J Am Coll Cardiol 2013;62:1365–1372. https://doi.org/10.1016/j.jacc.2013.05.069

Ledwidge M, Gallagher J, Conlon C, Tallon E, O'Connell E, Dawkins I, et al. Natriuretic peptide‐based screening and collaborative care for heart failure: The STOP‐HF randomized trial. JAMA 2013;310:66–74. https://doi.org/10.1001/jama.2013.7588

Zelniker TA, Wiviott SD, Raz I, Im K, Goodrich EL, Bonaca MP, et al. SGLT2 inhibitors for primary and secondary prevention of cardiovascular and renal outcomes in type 2 diabetes: A systematic review and meta‐analysis of cardiovascular outcome trials. Lancet 2019;393:31–39. https://doi.org/10.1016/S0140‐6736(18)32590‐X

Lind M, Bounias I, Olsson M, Gudbjörnsdottir S, Svensson AM, Rosengren A. Glycaemic control and incidence of heart failure in 20,985 patients with type 1 diabetes: An observational study. Lancet 2011;378:140–146. https://doi.org/10.1016/S0140‐6736(11)60471‐6

McAllister DA, Read SH, Kerssens J, Livingstone S, McGurnaghan S, Jhund P, et al. Incidence of hospitalization for heart failure and case‐fatality among 3.25 million people with and without diabetes mellitus. Circulation 2018;138:2774–2786. https://doi.org/10.1161/CIRCULATIONAHA.118.034986

Pop‐Busui R, Januzzi JL, Bruemmer D, Butalia S, Green JB, Horton WB, et al. Heart failure: An underappreciated complication of diabetes. A consensus report of the American Diabetes Association. Diabetes Care 2022;45:1670–1690. https://doi.org/10.2337/dci22‐0014

Ceriello A, Catrinoiu D, Chandramouli C, Cosentino F, Dombrowsky AC, Itzhak B, et al.; D&CVD EASD Study Group. Heart failure in type 2 diabetes: Current perspectives on screening, diagnosis and management. Cardiovasc Diabetol 2021;20:218. https://doi.org/10.1186/s12933‐021‐01408‐1

Valensi P, Meune C. Congestive heart failure caused by silent ischemia and silent myocardial infarction: Diagnostic challenge in type 2 diabetes. Herz 2019;44:210–217. https://doi.org/10.1007/s00059‐019‐4798‐3

Ho KL, Karwi QG, Connolly D, Pherwani S, Ketema EB, Ussher JR, et al. Metabolic, structural and biochemical changes in diabetes and the development of heart failure. Diabetologia 2022;65:411–423. https://doi.org/10.1007/s00125‐021‐05637‐7

Golay A, DeFronzo RA, Ferrannini E, Simonson DC, Thorin D, Acheson K, et al. Oxidative and non‐oxidative glucose metabolism in non‐obese type 2 (non‐insulin‐dependent) diabetic patients. Diabetologia 1988;31:585–591. https://doi.org/10.1007/BF00264764

Amaral N, Okonko DO. Metabolic abnormalities of the heart in type II diabetes. Diab Vasc Dis Res 2015;12:239–248. https://doi.org/10.1177/1479164115580936

Bayeva M, Sawicki KT, Ardehali H. Taking diabetes to heart – deregulation of myocardial lipid metabolism in diabetic cardiomyopathy. J Am Heart Assoc 2013;2:e000433. https://doi.org/10.1161/JAHA.113.000433

Montaigne D, Marechal X, Coisne A, Debry N, Modine T, Fayad G, et al. Myocardial contractile dysfunction is associated with impaired mitochondrial function and dynamics in type 2 diabetic but not in obese patients. Circulation 2014;130:554–564. https://doi.org/10.1161/CIRCULATIONAHA.113.008476

Boudina S, Sena S, Theobald H, Sheng X, Wright JJ, Hu XX, et al. Mitochondrial energetics in the heart in obesity‐related diabetes: Direct evidence for increased uncoupled respiration and activation of uncoupling proteins. Diabetes 2007;56:2457–2466. https://doi.org/10.2337/db07‐0481

Qin CX, Sleaby R, Davidoff AJ, Bell JR, De Blasio MJ, Delbridge LM, et al. Insights into the role of maladaptive hexosamine biosynthesis and O‐GlcNAcylation in development of diabetic cardiac complications. Pharmacol Res 2017;116:45–56. https://doi.org/10.1016/j.phrs.2016.12.016

Liu ZW, Zhu HT, Chen KL, Dong X, Wei J, Qiu C, et al. Protein kinase RNA‐like endoplasmic reticulum kinase (PERK) signaling pathway plays a major role in reactive oxygen species (ROS)‐mediated endoplasmic reticulum stress‐induced apoptosis in diabetic cardiomyopathy. Cardiovasc Diabetol 2013;12:158. https://doi.org/10.1186/1475‐2840‐12‐158

Jweied EE, McKinney RD, Walker LA, Brodsky I, Geha AS, Massad MG, et al. Depressed cardiac myofilament function in human diabetes mellitus. Am J Physiol Heart Circ Physiol 2005;289:H2478–H2483. https://doi.org/10.1152/ajpheart.00638.2005

Dewanjee S, Vallamkondu J, Kalra RS, John A, Reddy PH, Kandimalla R. Autophagy in the diabetic heart: A potential pharmacotherapeutic target in diabetic cardiomyopathy. Ageing Res Rev 2021;68:101338. https://doi.org/10.1016/j.arr.2021.101338

Chowdhry MF, Vohra HA, Galiñanes M. Diabetes increases apoptosis and necrosis in both ischemic and nonischemic human myocardium: Role of caspases and poly‐adenosine diphosphate‐ribose polymerase. J Thorac Cardiovasc Surg 2007;134:124–131. https://doi.org/10.1016/j.jtcvs.2006.12.059

Masaki N, Feng B, Bretón‐Romero R, Inagaki E, Weisbrod RM, Fetterman JL, et al. O‐GlcNAcylation mediates glucose‐induced alterations in endothelial cell phenotype in human diabetes mellitus. J Am Heart Assoc 2020;9:e014046. https://doi.org/10.1161/JAHA.119.014046

McGavock JM, Lingvay I, Zib I, Tillery T, Salas N, Unger R, et al. Cardiac steatosis in diabetes mellitus: A 1H‐magnetic resonance spectroscopy study. Circulation 2007;116:1170–1175. https://doi.org/10.1161/CIRCULATIONAHA.106.645614

Poornima IG, Parikh P, Shannon RP. Diabetic cardiomyopathy: The search for a unifying hypothesis. Circ Res 2006;98:596–605. https://doi.org/10.1161/01.RES.0000207406.94146.c2

Ussher JR. The role of cardiac lipotoxicity in the pathogenesis of diabetic cardiomyopathy. Expert Rev Cardiovasc Ther 2014;12:345–358. https://doi.org/10.1586/14779072.2014.891939

Zlobine I, Gopal K, Ussher JR. Lipotoxicity in obesity and diabetes‐related cardiac dysfunction. Biochim Biophys Acta 2016;1861:1555–1568. https://doi.org/10.1016/j.bbalip.2016.02.011

Listenberger LL, Ory DS, Schaffer JE. Palmitate‐induced apoptosis can occur through a ceramide‐independent pathway. J Biol Chem 2001;276:14890–14895. https://doi.org/10.1074/jbc.M010286200

Van Linthout S, Seeland U, Riad A, Eckhardt O, Hohl M, Dhayat N, et al. Reduced MMP‐2 activity contributes to cardiac fibrosis in experimental diabetic cardiomyopathy. Basic Res Cardiol 2008;103:319–327. https://doi.org/10.1007/s00395‐008‐0715‐2

Aronson D. Cross‐linking of glycated collagen in the pathogenesis of arterial and myocardial stiffening of aging and diabetes. J Hypertens 2003;21:3–12. https://doi.org/10.1097/00004872‐200301000‐00002

Tan Y, Zhang Z, Zheng C, Wintergerst KA, Keller BB, Cai L. Mechanisms of diabetic cardiomyopathy and potential therapeutic strategies: Preclinical and clinical evidence. Nat Rev Cardiol 2020;17:585–607. https://doi.org/10.1038/s41569‐020‐0339‐2

Dassanayaka S, Readnower RD, Salabei JK, Long BW, Aird AL, Zheng YT, et al. High glucose induces mitochondrial dysfunction independently of protein O‐GlcNAcylation. Biochem J 2015;467:115–126. https://doi.org/10.1042/BJ20141018

Wende AR. Post‐translational modifications of the cardiac proteome in diabetes and heart failure. Proteomics Clin Appl 2016;10:25–38. https://doi.org/10.1002/prca.201500052

Krüger M, Babicz K, von Frieling‐Salewsky M, Linke WA. Insulin signaling regulates cardiac titin properties in heart development and diabetic cardiomyopathy. J Mol Cell Cardiol 2010;48:910–916. https://doi.org/10.1016/j.yjmcc.2010.02.012

Hopf AE, Andresen C, Kötter S, Isić M, Ulrich K, Sahin S, et al. Diabetes‐induced cardiomyocyte passive stiffening is caused by impaired insulin‐dependent titin modification and can be modulated by neuregulin‐1. Circ Res 2018;123:342–355. https://doi.org/10.1161/CIRCRESAHA.117.312166

Feng B, Chen S, George B, Feng Q, Chakrabarti S. miR133a regulates cardiomyocyte hypertrophy in diabetes. Diabetes Metab Res Rev 2010;26:40–49. https://doi.org/10.1002/dmrr.1054

Tabit CE, Chung WB, Hamburg NM, Vita JA. Endothelial dysfunction in diabetes mellitus: Molecular mechanisms and clinical implications. Rev Endocr Metab Disord 2010;11:61–74. https://doi.org/10.1007/s11154‐010‐9134‐4

Paulus WJ. Early appearance of myocardial fibrosis in restrictive diabetic cardiomyopathy. Circ Cardiovasc Imaging 2023;16:554–556. https://doi.org/10.1161/CIRCIMAGING.123.015732

Kaze AD, Santhanam P, Erqou S, Ahima RS, Bertoni A, Echouffo‐Tcheugui JB. Microvascular disease and incident heart failure among individuals with type 2 diabetes mellitus. J Am Heart Assoc 2021;10:e018998. https://doi.org/10.1161/JAHA.120.018998

Ramesh P, Yeo JL, Brady EM, McCann GP. Role of inflammation in diabetic cardiomyopathy. Ther Adv Endocrinol Metab 2022;13:20420188221083530. https://doi.org/10.1177/20420188221083530

Jia G, DeMarco VG, Sowers JR. Insulin resistance and hyperinsulinaemia in diabetic cardiomyopathy. Nat Rev Endocrinol 2016;12:144–153. https://doi.org/10.1038/nrendo.2015.216

Franssen C, Chen S, Unger A, Korkmaz HI, De Keulenaer GW, Tschöpe C, et al. Myocardial microvascular inflammatory endothelial activation in heart failure with preserved ejection fraction. JACC Heart Fail 2016;4:312–324. https://doi.org/10.1016/j.jchf.2015.10.007

Sorop O, Heinonen I, van Kranenburg M, van de Wouw J, de Beer VJ, Nguyen ITN, et al. Multiple common comorbidities produce left ventricular diastolic dysfunction associated with coronary microvascular dysfunction, oxidative stress, and myocardial stiffening. Cardiovasc Res 2018;114:954–964. https://doi.org/10.1093/cvr/cvy038

Riehle C, Bauersachs J. Of mice and men: Models and mechanisms of diabetic cardiomyopathy. Basic Res Cardiol 2018;114:2. https://doi.org/10.1007/s00395‐018‐0711‐0

Papp Z, Radovits T, Paulus WJ, Hamdani N, Seferović PM. Molecular and pathophysiological links between heart failure with preserved ejection fraction and type 2 diabetes mellitus. Eur J Heart Fail 2018;20:1649–1652. https://doi.org/10.1002/ejhf.1318

Boonman‐de Winter LJ, Rutten FH, Cramer MJ, Landman MJ, Liem AH, Rutten GE, et al. High prevalence of previously unknown heart failure and left ventricular dysfunction in patients with type 2 diabetes. Diabetologia 2012;55:2154–2162. https://doi.org/10.1007/s00125‐012‐2579‐0

Loncarevic B, Trifunovic D, Soldatovic I, Vujisic‐Tesic B. Silent diabetic cardiomyopathy in everyday practice: A clinical and echocardiographic study. BMC Cardiovasc Disord 2016;16:242. https://doi.org/10.1186/s12872‐016‐0395‐z

Nakai H, Takeuchi M, Nishikage T, Lang RM, Otsuji Y. Subclinical left ventricular dysfunction in asymptomatic diabetic patients assessed by two‐dimensional speckle tracking echocardiography: Correlation with diabetic duration. Eur J Echocardiogr 2009;10:926–932. https://doi.org/10.1093/ejechocard/jep097

Pham I, Cosson E, Nguyen MT, Banu I, Genevois I, Poignard P, et al. Evidence for a specific diabetic cardiomyopathy: An observational retrospective echocardiographic study in 656 asymptomatic type 2 diabetic patients. Int J Endocrinol 2015;2015:743503. https://doi.org/10.1155/2015/743503

Seferovic JP, Tesic M, Seferovic PM, Lalic K, Jotic A, Biering‐Sørensen T, et al. Increased left ventricular mass index is present in patients with type 2 diabetes without ischemic heart disease. Sci Rep 2018;8:926. https://doi.org/10.1038/s41598‐018‐19229‐w

Jensen MT, Fung K, Aung N, Sanghvi MM, Chadalavada S, Paiva JM, et al. Changes in cardiac morphology and function in individuals with diabetes mellitus: The UK Biobank Cardiovascular Magnetic Resonance Substudy. Circ Cardiovasc Imaging 2019;12:e009476. https://doi.org/10.1161/CIRCIMAGING.119.009476

Pua CJ, Loo G, Kui M, Moy WL, Hii A‐A, Lee V, et al. Impact of diabetes on myocardial fibrosis in patients with hypertension: The REMODEL study. Circ Cardiovasc Imaging 2023;16:545–553. https://doi.org/10.1161/CIRCIMAGING.123.015051

Wang Y, Yang H, Huynh Q, Nolan M, Negishi K, Marwick TH. Diagnosis of nonischemic stage B heart failure in type 2 diabetes mellitus: Optimal parameters for prediction of heart failure. JACC Cardiovasc Imaging 2018;11:1390–1400. https://doi.org/10.1016/j.jcmg.2018.03.015

Segar MW, Khan MS, Patel KV, Butler J, Tang WHW, Vaduganathan M, et al. Prevalence and prognostic implications of diabetes with cardiomyopathy in community‐dwelling adults. J Am Coll Cardiol 2021;78:1587–1598. https://doi.org/10.1016/j.jacc.2021.08.020

Ernande L, Audureau E, Jellis CL, Bergerot C, Henegar C, Sawaki D, et al. Clinical implications of echocardiographic phenotypes of patients with diabetes mellitus. J Am Coll Cardiol 2017;70:1704–1716. https://doi.org/10.1016/j.jacc.2017.07.792

Yang X, Ma RC, So WY, Kong AP, Ko GT, Ho CS, et al. Development and validation of a risk score for hospitalization for heart failure in patients with type 2 diabetes mellitus. Cardiovasc Diabetol 2008;7:9. https://doi.org/10.1186/1475‐2840‐7‐9

Segar MW, Vaduganathan M, Patel KV, McGuire DK, Butler J, Fonarow GC, et al. Machine learning to predict the risk of incident heart failure hospitalization among patients with diabetes: The WATCH‐DM risk score. Diabetes Care 2019;42:2298–2306. https://doi.org/10.2337/dc19‐0587

Williams BA, Geba D, Cordova JM, Shetty SS. A risk prediction model for heart failure hospitalization in type 2 diabetes mellitus. Clin Cardiol 2020;43:275–283. https://doi.org/10.1002/clc.23298

Elharram M, Ferreira JP, Huynh T, Ni J, Giannetti N, Verma S, et al. Prediction of heart failure outcomes in patients with type 2 diabetes mellitus: Validation of the Thrombolysis in Myocardial Infarction Risk Score for Heart Failure in Diabetes (TRS‐HFDM) in patients in the ACCORD trial. Diabetes Obes Metab 2021;23:782–790. https://doi.org/10.1111/dom.14283

Berg DD, Wiviott SD, Scirica BM, Gurmu Y, Mosenzon O, Murphy SA, et al. Heart failure risk stratification and efficacy of sodium‐glucose cotransporter‐2 inhibitors in patients with type 2 diabetes mellitus. Circulation 2019;140:1569–1577. https://doi.org/10.1161/CIRCULATIONAHA.119.042685

Pandey A, Vaduganathan M, Patel KV, Ayers C, Ballantyne CM, Kosiborod MN, et al. Biomarker‐based risk prediction of incident heart failure in pre‐diabetes and diabetes. JACC Heart Fail 2021;9:215–223. https://doi.org/10.1016/j.jchf.2020.10.013

Lin Y, Shao H, Shi L, Anderson AH, Fonseca V. Predicting incident heart failure among patients with type 2 diabetes mellitus: The DM‐CURE risk score. Diabetes Obes Metab 2022;24:2203–2211. https://doi.org/10.1111/dom.14806

Sun LY, Zghebi SS, Eddeen AB, Liu PP, Lee DS, Tu K, et al. Derivation and external validation of a clinical model to predict heart failure onset in patients with incident diabetes. Diabetes Care 2022;45:2737–2745. https://doi.org/10.2337/dc22‐0894

Segar MW, Patel KV, Hellkamp AS, Vaduganathan M, Lokhnygina Y, Green JB, et al. Validation of the WATCH‐DM and TRS‐HFDM risk scores to predict the risk of incident hospitalization for heart failure among adults with type 2 diabetes: A multicohort analysis. J Am Heart Assoc 2022;11:e024094. https://doi.org/10.1161/JAHA.121.024094

Seferović P, Farmakis D, Bayes‐Genis A, Ben Gal T, Böhm M, Chioncel O, et al. Biomarkers for the prediction of heart failure and cardiovascular events in patients with type 2 diabetes: A position statement from the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail 2022;24:1162–1170. https://doi.org/10.1002/ejhf.2575

Wong YW, Thomas L, Sun JL, McMurray JJ, Krum H, Hernandez AF, et al. Predictors of incident heart failure hospitalizations among patients with impaired glucose tolerance: Insight from the Nateglinide And Valsartan in Impaired Glucose Tolerance Outcomes Research study. Circ Heart Fail 2013;6:203–210. https://doi.org/10.1161/CIRCHEARTFAILURE.112.000086

Echouffo‐Tcheugui JB, Zhang S, Florido R, Hamo C, Pankow JS, Michos ED, et al. Duration of diabetes and incident heart failure: The ARIC (Atherosclerosis Risk In Communities) study. JACC Heart Fail 2021;9:594–603. https://doi.org/10.1016/j.jchf.2021.06.005

Marwick TH, Ritchie R, Shaw JE, Kaye D. Implications of underlying mechanisms for the recognition and management of diabetic cardiomyopathy. J Am Coll Cardiol 2018;71:339–351. https://doi.org/10.1016/j.jacc.2017.11.019

Marx N, Federici M, Schütt K, Müller‐Wieland D, Ajjan RA, Antunes MJ, et al. 2023 ESC Guidelines for the management of cardiovascular disease in patients with diabetes. Eur Heart J 2023;44:4043–4140. https://doi.org/10.1093/eurheartj/ehad192

Piepoli MF, Adamo M, Barison A, Bestetti RB, Biegus J, Böhm M, et al. Preventing heart failure: A position paper of the Heart Failure Association in collaboration with the European Association of Preventive Cardiology. Eur J Heart Fail 2022;24:143–168. https://doi.org/10.1002/ejhf.2351

Rawshani A, Rawshani A, Franzén S, Sattar N, Eliasson B, Svensson AM, et al. Risk factors, mortality, and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med 2018;379:633–644. https://doi.org/10.1056/NEJMoa1800256

Wing RR, Bolin P, Brancati FL, Bray GA, Clark JM, Coday M, et al.; Look AHEAD Research Group. Cardiovascular effects of intensive lifestyle intervention in type 2 diabetes. N Engl J Med 2013;369:145–154. https://doi.org/10.1056/NEJMoa1212914

Parry HM, Deshmukh H, Levin D, Van Zuydam N, Elder DH, Morris AD, et al. Both high and low HbA1c predict incident heart failure in type 2 diabetes mellitus. Circ Heart Fail 2015;8:236–242. https://doi.org/10.1161/CIRCHEARTFAILURE.113.000920

Gerstein HC, Miller ME, Byington RP, Goff DC Jr, Bigger JT, Buse JB, et al.; Action to Control Cardiovascular Risk in Diabetes Study Group. Effects of intensive glucose lowering in type 2 diabetes. N Engl J Med 2008;358:2545–2559. https://doi.org/10.1056/NEJMoa0802743

Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S, et al.; EMPA‐REG OUTCOME Investigators. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med 2015;373:2117–2128. https://doi.org/10.1056/NEJMoa1504720

Neal B, Perkovic V, Mahaffey KW, de Zeeuw D, Fulcher G, Erondu N, et al.; CANVAS Program Collaborative Group. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med 2017;377:644–657. https://doi.org/10.1056/NEJMoa1611925

Wiviott SD, Raz I, Bonaca MP, Mosenzon O, Kato ET, Cahn A, et al.; DECLARE‐TIMI 58 Investigators. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N Engl J Med 2019;380:347–357. https://doi.org/10.1056/NEJMoa1812389

Cannon CP, Pratley R, Dagogo‐Jack S, Mancuso J, Huyck S, Masiukiewicz U, et al.; VERTIS CV Investigators. Cardiovascular outcomes with ertugliflozin in type 2 diabetes. N Engl J Med 2020;383:1425–1435. https://doi.org/10.1056/NEJMoa2004967

McGuire DK, Shih WJ, Cosentino F, Charbonnel B, Cherney DZI, Dagogo‐Jack S, et al. Association of SGLT2 inhibitors with cardiovascular and kidney outcomes in patients with type 2 diabetes: A meta‐analysis. JAMA Cardiol 2021;6:148–158. https://doi.org/10.1001/jamacardio.2020.4511

Kosiborod M, Cavender MA, Fu AZ, Wilding JP, Khunti K, Holl RW, et al.; CVD‐REAL Investigators and Study Group. Lower risk of heart failure and death in patients initiated on sodium‐glucose cotransporter‐2 inhibitors versus other glucose‐lowering drugs: The CVD‐REAL study (Comparative Effectiveness of Cardiovascular Outcomes in New Users of Sodium‐Glucose Cotransporter‐2 Inhibitors). Circulation 2017;136:249–259. https://doi.org/10.1161/CIRCULATIONAHA.117.029190

Scirica BM, Braunwald E, Raz I, Cavender MA, Morrow DA, Jarolim P, et al.; SAVOR‐TIMI 53 Steering Committee and Investigators. Heart failure, saxagliptin, and diabetes mellitus: Observations from the SAVOR‐TIMI 53 randomized trial. Circulation 2014;130:1579–1588. https://doi.org/10.1161/CIRCULATIONAHA.114.010389

Komajda M, McMurray JJV, Beck‐Nielsen H, Gomis R, Hanefeld M, Pocock SJ, et al. Heart failure events with rosiglitazone in type 2 diabetes: Data from the RECORD clinical trial. Eur Heart J 2010;31:824–831. https://doi.org/10.1093/eurheartj/ehp604

Liao HW, Saver JL, Wu YL, Chen TH, Lee M, Ovbiagele B. Pioglitazone and cardiovascular outcomes in patients with insulin resistance, pre‐diabetes and type 2 diabetes: A systematic review and meta‐analysis. BMJ Open 2017;7:e013927. https://doi.org/10.1136/bmjopen‐2016‐013927

Ceriello A, Lalic N, Montanya E, Valensi P, Khunti K, Hummel M, et al. NT‐proBNP point‐of‐care measurement as a screening tool for heart failure and CVD risk in type 2 diabetes with hypertension. J Diabetes Complications 2023;37:108410. https://doi.org/10.1016/j.jdiacomp.2023.108410

Perkovic V, Jardine MJ, Neal B, Bompoint S, Heerspink HJL, Charytan DM, et al.; CREDENCE Trial Investigators. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N Engl J Med 2019;380:2295–2306. https://doi.org/10.1056/NEJMoa1811744

Bhatt DL, Szarek M, Pitt B, Cannon CP, Leiter LA, McGuire DK, et al.; SCORED Investigators. Sotagliflozin in patients with diabetes and chronic kidney disease. N Engl J Med 2020;384:129–139. https://doi.org/10.1056/NEJMoa2030186

Heerspink HJL, Stefánsson BV, Correa‐Rotter R, Chertow GM, Greene T, Hou FF, et al.; DAPA‐CKD Trial Committees and Investigators. Dapagliflozin in patients with chronic kidney disease. N Engl J Med 2020;383:1436–1446. https://doi.org/10.1056/NEJMoa2024816

Herrington WG, Staplin N, Wanner C, Green JB, Hauske SJ, Emberson JR, et al.; The EMPA‐KIDNEY Collaborative Group. Empagliflozin in patients with chronic kidney disease. N Engl J Med 2023;388:117–127. https://doi.org/10.1056/NEJMoa2204233

Filippatos G, Anker SD, Agarwal R, Ruilope LM, Rossing P, Bakris GL, et al.; FIGARO‐DKD Investigators. Finerenone reduces risk of incident heart failure in patients with chronic kidney disease and type 2 diabetes: Analyses from the FIGARO‐DKD trial. Circulation 2022;145:437–447. https://doi.org/10.1161/CIRCULATIONAHA.121.057983

Pitt B, Filippatos G, Agarwal R, Anker SD, Bakris GL, Rossing P, et al.; FIGARO‐DKD Investigators. Cardiovascular events with finerenone in kidney disease and type 2 diabetes. N Engl J Med 2021;385:2252–2263. https://doi.org/10.1056/NEJMoa2110956

Lincoff AM, Brown‐Frandsen K, Colhoun HM, Deanfield J, Emerson SS, Esbjerg S, et al.; SELECT Trial Investigators. Semaglutide and cardiovascular outcomes in obesity without diabetes. N Engl J Med 2023;389:2221–2232. https://doi.org/10.1056/NEJMoa2307563

Kosiborod MN, Petrie MC, Borlaug BA, Butler J, Davies MJ, Hovingh GK, et al.; STEP‐HFpEF DM Trial Committees and Investigators. Semaglutide in patients with obesity‐related heart failure and type 2 diabetes. N Engl J Med 2024;390:1394–1407. https://doi.org/10.1056/NEJMoa2313917

Cheng S, Xanthakis V, Sullivan LM, Lieb W, Massaro J, Aragam J, et al. Correlates of echocardiographic indices of cardiac remodeling over the adult life course: Longitudinal observations from the Framingham Heart Study. Circulation 2010;122:570–578. https://doi.org/10.1161/CIRCULATIONAHA.110.937821

Sera F, Jin Z, Russo C, Lee ES, Schwartz JE, Rundek T, et al. Ambulatory blood pressure control and subclinical left ventricular dysfunction in treated hypertensive subjects. J Am Coll Cardiol 2015;66:1408–1409. https://doi.org/10.1016/j.jacc.2015.05.083

Ren J, Wu NN, Wang S, Sowers JR, Zhang Y. Obesity cardiomyopathy: Evidence, mechanisms, and therapeutic implications. Physiol Rev 2021;101:1745–1807. https://doi.org/10.1152/physrev.00030.2020

Lorenzo‐Almorós A, Tuñón J, Orejas M, Cortés M, Egido J, Lorenzo Ó. Diagnostic approaches for diabetic cardiomyopathy. Cardiovasc Diabetol 2017;16:28. https://doi.org/10.1186/s12933‐017‐0506‐x

Januzzi JL Jr, Butler J, Del Prato S, Ezekowitz JA, Ibrahim NE, Lam CSP, et al. Rationale and design of the Aldose Reductase Inhibition for Stabilization of Exercise Capacity in Heart Failure Trial (ARISE‐HF) in patients with high‐risk diabetic cardiomyopathy. Am Heart J 2023;256:25–36. https://doi.org/10.1016/j.ahj.2022.11.003

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...