New insights into the 17β-hydroxysteroid dehydrogenase type 10 and amyloid-β 42 derived cytotoxicity relevant to Alzheimer's disease

. 2025 Jul 23 ; 17 (1) : 170. [epub] 20250723

Status In-Process Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40702546

Grantová podpora
SV2112/2024 University of Hradec Kralove (Faculty of Science)
00179906 MH CZ- DRO (UHHK)
CZ.02.01.01/00/23_021/0008439 The Biomedical Indicators for Personalized Medicine project (BIPOLE)

Odkazy

PubMed 40702546
PubMed Central PMC12285154
DOI 10.1186/s13195-025-01821-8
PII: 10.1186/s13195-025-01821-8
Knihovny.cz E-zdroje

BACKGROUND: The mitochondrial enzyme 17β-hydroxysteroid dehydrogenase type 10 (HSD10) is implicated in neurodegenerative disorders, particularly Alzheimer’s disease (AD), through its interplay with the amyloid-β peptide (Aβ). However, its independent pathological role in AD remains unclear. METHODS: To explore the individual effects of HSD10 and amyloid precursor protein (APP) overexpression (including the Aβ42-generating APPSwe/Ind variant), monoclonal HEK293 cell lines were developed. Cellular fitness was evaluated by measuring ATP levels, cell viability, and cytotoxicity measurements under glucose and galactose culture conditions. Mitochondrial metabolic changes were analysed using mitochondrial electron flow measurements in response to various metabolic substrates. HSD10 enzymatic activity was monitored using a fluorogenic probe, and two HSD10 inhibitors were tested for their ability to reduce cytotoxic effects. Statistical significance was determined using appropriate tests as detailed in the methods section. RESULTS: The overexpression of HSD10 or APPSwe/Ind led to mitochondrial dysfunction and reduced viability, particularly under glucose-deprived conditions. HSD10-driven cytotoxicity was linked to its enzymatic activity and associated with impaired TCA cycle function, reduced β-oxidation, and increased oxidative stress. In contrast, APPSwe/Ind overexpression induced Aβ42 production, glucose hypermetabolism, and enhanced β-oxidation. Aβ42 also affected HSD10 activity and further amplified its cytotoxic effects. The benzothiazole-based HSD10 inhibitor 34 restored cell viability under both HSD10 overexpression and Aβ42-rich conditions. CONCLUSIONS: HSD10 and Aβ42 each contribute to mitochondrial impairment via distinct metabolic pathways. These findings established HSD10 as an independent pathological factor in AD and support the potential of HSD10 inhibitors, particularly inhibitor 34, as therapeutic agents targeting mitochondrial dysfunction in AD. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13195-025-01821-8.

Zobrazit více v PubMed

Yang SY, He XY, Isaacs C, Dobkin C, Miller D, Philipp M. Roles of 17β-hydroxysteroid dehydrogenase type 10 in neurodegenerative disorders. J Steroid Biochem Mol Biol. 2014;143:460–72. PubMed

Holzmann J, Frank P, Löffler E, Bennett KL, Gerner C, Rossmanith W. RNase P without RNA: identification and functional reconstitution of the human mitochondrial tRNA processing enzyme. Cell. 2008;135(3):462–74. PubMed

Reinhard L, Sridhara S, Hallberg BM. Structure of the nuclease subunit of human mitochondrial RNase P. Nucleic Acids Res. 2015;43(11):5664–72. PubMed PMC

Reinhard L, Sridhara S, Hällberg BM. The MRPP1/MRPP2 complex is a tRNA-maturation platform in human mitochondria. Nucleic Acids Res. 2017;45(21):12469–80. PubMed PMC

Zschocke J, Ruiter JP, Brand J, Lindner M, Hoffmann GF, Wanders RJ, et al. Progressive infantile neurodegeneration caused by 2-methyl-3-hydroxybutyryl-CoA dehydrogenase deficiency: a novel inborn error of branched-chain fatty acid and isoleucine metabolism. Pediatr Res. 2000;48(6):852–5. PubMed

Zschocke J. HSD10 disease: clinical consequences of mutations in the PubMed

Rauschenberger K, Schöler K, Sass JO, Sauer S, Djuric Z, Rumig C, et al. A non-enzymatic function of 17β‐hydroxysteroid dehydrogenase type 10 is required for mitochondrial integrity and cell survival. EMBO Mol Med. 2010;2(2):51–62. PubMed PMC

Tieu K, Perier C, Vila M, Caspersen C, Zhang HP, Teismann P, et al. L-3-hydroxyacyl-CoA dehydrogenase II protects in a model of parkinson’s disease. Ann Neurol. 2004;56(1):51–60. PubMed

Du Yan S, Fu J, Soto C, Chen X, Zhu H, Al-Mohanna F, et al. An intracellular protein that binds amyloid-β peptide and mediates neurotoxicity in alzheimer’s disease. Nature. 1997;389(6652):689–95. PubMed

Lustbader JW, Cirilli M, Lin C, Xu HW, Takuma K, Wang N, et al. ABAD directly links Aß to mitochondrial toxicity in alzheimer’s disease. Science. 2004;304(5669):448–52. PubMed

Yao J, Du H, Yan S, Fang F, Wang C, Lue LF, et al. Inhibition of Amyloid-β (Aβ) Peptide-Binding alcohol Dehydrogenase-Aβ interaction reduces Aβ accumulation and improves mitochondrial function in a mouse model of alzheimer’s disease. J Neurosci. 2011;31(6):2313–20. PubMed PMC

Hamley IW. The amyloid Beta peptide: A chemist’s perspective. Role in alzheimer’s and fibrillization. Chem Rev. 2012;112(10):5147–92. PubMed

Shankar GM, Walsh DM. Alzheimer’s disease: synaptic dysfunction and Aβ. Mol Neurodegeneration. 2009;4(1):48. PubMed PMC

Chen XQ, Mobley WC. Alzheimer disease pathogenesis: insights from molecular and cellular biology studies of oligomeric Aβ and Tau species. Front Neurosci. 2019;13:659. PubMed PMC

Sun X, Chen WD, Wang YD. β-Amyloid: the key peptide in the pathogenesis of Alzheimer’s disease. Front Pharmacol [Internet]. 2015 Sep 30 [cited 2024 Oct 29];6. Available from: http://journal.frontiersin.org/Article/10.3389/fphar.2015.00221/abstract PubMed PMC

Zheng H, Koo EH. Biology and pathophysiology of the amyloid precursor protein. Mol Neurodegeneration. 2011;6(1):27. PubMed PMC

Small DH, Clarris HL, Williamson TG, Reed G, Key B, Mok SS, et al. Neurite-Outgrowth regulating functions of the amyloid protein precursor of alzheimer’s disease. J Alzheimer’s Disease. 1999;1(4–5):275–85. PubMed

Lorenzo A, Yuan M, Zhang Z, Paganetti PA, Sturchler-Pierrat C, Staufenbiel M, et al. Amyloid β interacts with the amyloid precursor protein: a potential toxic mechanism in alzheimer’s disease. Nat Neurosci. 2000;3(5):460–4. PubMed

Ho A, Südhof TC. Binding of F-spondin to amyloid-β precursor protein: A candidate amyloid-β precursor protein ligand that modulates amyloid-β precursor protein cleavage. Proc Natl Acad Sci USA. 2004;101(8):2548–53. PubMed PMC

Lourenço FC, Galvan V, Fombonne J, Corset V, Llambi F, Müller U, et al. Netrin-1 interacts with amyloid precursor protein and regulates amyloid-β production. Cell Death Differ. 2009;16(5):655–63. PubMed PMC

Young-Pearse TL, Bai J, Chang R, Zheng JB, LoTurco JJ, Selkoe DJ. A critical function for β-Amyloid precursor protein in neuronal migration revealed by PubMed PMC

Wang Z, Wang B, Yang L, Guo Q, Aithmitti N, Songyang Z, et al. Presynaptic and postsynaptic interaction of the amyloid precursor protein promotes peripheral and central synaptogenesis. J Neurosci. 2009;29(35):10788–801. PubMed PMC

Oppermann U, Salim S, Hult M, Eissner G, Jörnvall H. Regulatory factors and motifs in SDR enzymes. In: Weiner H, Maser E, Crabb DW, Lindahl R, editors. Enzymology and molecular biology of carbonyl metabolism 7 [Internet]. Boston, MA: Springer US; 1999 [cited 2024 Jul 12]. pp. 365–71. (Advances in Experimental Medicine and Biology; vol. 463). Available from: http://link.springer.com/10.1007/978-1-4615-4735-8_45 PubMed

Takuma K, Yao J, Huang J, Xu H, Chen X, Luddy J, et al. ABAD enhances Aβ-induced cell stress via mitochondrial dysfunction. FASEB J. 2005;19(6):1–25. PubMed

Yan SD, Stern DM. Mitochondrial dysfunction and alzheimer’s disease: role of amyloid-β peptide alcohol dehydrogenase (ABAD). Int J Exp Pathol. 2005;86(3):161–71. PubMed PMC

Du Yan S, Shi Y, Zhu A, Fu J, Zhu H, Zhu Y, et al. Role of ERAB/l-3-Hydroxyacyl-coenzyme A dehydrogenase type II activity in Aβ-induced cytotoxicity. J Biol Chem. 1999;274(4):2145–56. PubMed

Vinklarova L, Schmidt M, Benek O, Kuca K, Gunn-Moore F, Musilek K. Friend or enemy? Review of 17β‐HSD10 and its role in human health or disease. J Neurochem. 2020;155(3):231–49. PubMed

Morsy A, Trippier PC. Amyloid-Binding alcohol dehydrogenase (ABAD) inhibitors for the treatment of alzheimer’s disease: miniperspective. J Med Chem. 2019;62(9):4252–64. PubMed

Benek O, Aitken L, Hroch L, Kuca K, Gunn-Moore F, Musilek K. A Direct Interaction Between Mitochondrial Proteins and Amyloid-β Peptide and its Significance for the Progression and Treatment of Alzheimer’s Disease. CMC. 2015;22(9):1056–85. PubMed

Benek O, Vaskova M, Miskerikova M, Schmidt M, Andrys R, Rotterova A, et al. Development of submicromolar 17β-HSD10 inhibitors and their in vitro and in vivo evaluation. Eur J Med Chem. 2023;258:115593. PubMed

Schmidt M, Vaskova M, Rotterova A, Fiandova P, Miskerikova M, Zemanova L, et al. Physiologically relevant fluorescent assay for identification of 17β-hydroxysteroid dehydrogenase type 10 inhibitors. J Neurochem. 2023;167(2):154–67. PubMed

Hanzlova M, Miskerikova MS, Rotterova A, Chalupova K, Jurkova K, Hamsikova M, et al. Nanomolar Benzothiazole-Based inhibitors of 17β-HSD10 with cellular bioactivity. ACS Med Chem Lett. 2023;14(12):1724–32. PubMed PMC

Xie Y, Deng S, Chen Z, Yan S, Landry DW. Identification of small-molecule inhibitors of the Aβ–ABAD interaction. Bioorg Med Chem Lett. 2006;16(17):4657–60. PubMed

Viswanath ANI, Kim T, Jung SY, Lim SM, Pae AN. In silico-designed novel non‐peptidic ABAD L PubMed

Morsy A, Maddeboina K, Gao J, Wang H, Valdez J, Dow LF, et al. Functionalized allopurinols targeting Amyloid-Binding alcohol dehydrogenase rescue Aβ-Induced mitochondrial dysfunction. ACS Chem Neurosci. 2022;13(14):2176–90. PubMed

Boutin S, Maltais R, Roy J, Poirier D. Synthesis of 17β-hydroxysteroid dehydrogenase type 10 steroidal inhibitors: selectivity, metabolic stability and enhanced potency. Eur J Med Chem. 2021;209:112909. PubMed

Aitken L, Benek O, McKelvie BE, Hughes RE, Hroch L, Schmidt M, et al. Novel Benzothiazole-based Ureas as 17β-HSD10 inhibitors, A potential alzheimer’s disease treatment. Molecules. 2019;24(15):2757. PubMed PMC

Kissinger CR, Rejto PA, Pelletier LA, Thomson JA, Showalter RE, Abreo MA, et al. Crystal structure of human ABAD/HSD10 with a bound inhibitor: implications for design of alzheimer’s disease therapeutics. J Mol Biol. 2004;342(3):943–52. PubMed

Aitken B, McKelvie, Hughes, Hroch S, et al. Novel Benzothiazole-based Ureas as 17β-HSD10 inhibitors, A potential alzheimer’s disease treatment. Molecules. 2019;24(15):2757. PubMed PMC

Abreo M, Meng J, Agree C. Pyrazole compounds, pharmaceutical compositions, and methods for modulating or inhibiting ERAB or HADH2 activity [Internet]. US20020065292A1, 2002 [cited 2025 Jun 17]. Available from: https://patents.google.com/patent/US20020065292A1/en

Muirhead KEA, Froemming M, Li X, Musilek K, Conway SJ, Sames D, et al. (–)-CHANA, a fluorogenic probe for detecting amyloid binding alcohol dehydrogenase HSD10 activity in living cells. ACS Chem Biol. 2010;5(12):1105–14. PubMed

Shevchenko A, Tomas H, Havlis J, Olsen JV, Mann M. In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat Protoc. 2006;1(6):2856–60. PubMed

Kong AT, Leprevost FV, Avtonomov DM, Mellacheruvu D, Nesvizhskii AI. MSFragger: ultrafast and comprehensive peptide identification in mass spectrometry-based proteomics. Nat Methods. 2017;14(5):513–20. PubMed PMC

Metodieva V, Smith T, Gunn-Moore F. The mitochondrial enzyme 17βHSD10 modulates ischemic and Amyloid-β-Induced stress in primary mouse astrocytes. eNeuro. 2022;9(5):ENEURO0040–222022. PubMed PMC

Tillement L, Lecanu L, Papadopoulos V. Further evidence on mitochondrial targeting of β-Amyloid and specificity of β-Amyloid-Induced mitotoxicity in neurons. Neurodegener Dis. 2011;8(5):331–44. PubMed

Caspersen C, Wang N, Yao J, Sosunov A, Chen X, Lustbader JW, et al. Mitochondrial Aβ: a potential focal point for neuronal metabolic dysfunction in alzheimer’s disease. FASEB J. 2005;19(14):2040–1. PubMed

Rossignol R, Gilkerson R, Aggeler R, Yamagata K, Remington SJ, Capaldi RA. Energy substrate modulates mitochondrial structure and oxidative capacity in Cancer cells. Cancer Res. 2004;64(3):985–93. PubMed

Orlicka-Płocka M, Gurda-Wozna D, Fedoruk-Wyszomirska A, Wyszko E. Circumventing the Crabtree effect: forcing oxidative phosphorylation (OXPHOS) via galactose medium increases sensitivity of HepG2 cells to the purine derivative Kinetin riboside. Apoptosis. 2020;25(11–12):835–52. PubMed PMC

Atlante A, de Bari L, Bobba A, Amadoro G. A disease with a sweet tooth: exploring the Warburg effect in alzheimer’s disease. Biogerontology. 2017;18(3):301–19. PubMed

Chen X, Qian Y, Wu S. The Warburg effect: evolving interpretations of an established concept. Free Radic Biol Med. 2015;79:253–63. PubMed PMC

Traxler L, Herdy JR, Stefanoni D, Eichhorner S, Pelucchi S, Szücs A, et al. Warburg-like metabolic transformation underlies neuronal degeneration in sporadic alzheimer’s disease. Cell Metabol. 2022;34(9):1248–e12636. PubMed PMC

Behl T, Kaur D, Sehgal A, Singh S, Sharma N, Zengin G, et al. Role of monoamine oxidase activity in alzheimer’s disease: an insight into the therapeutic potential of inhibitors. Molecules. 2021;26(12):3724. PubMed PMC

Cai Z. Monoamine oxidase inhibitors: promising therapeutic agents for alzheimer’s disease (Review). Mol Med Rep. 2014;9(5):1533–41. PubMed

Emilsson L, Saetre P, Balciuniene J, Castensson A, Cairns N, Jazin EE. Increased monoamine oxidase messenger RNA expression levels in frontal cortex of alzheimer’s disease patients. Neurosci Lett. 2002;326(1):56–60. PubMed

Hemmerová E, Špringer T, Krištofiková Z, Homola J. Study of biomolecular interactions of mitochondrial proteins related to alzheimer’s disease: toward Multi-Interaction biomolecular processes. Biomolecules. 2020;10(9):1214. PubMed PMC

Reiss AB, Arain HA, Stecker MM, Siegart NM, Kasselman LJ. Amyloid toxicity in alzheimer’s disease. Rev Neurosci. 2018;29(6):613–27. PubMed

Pera M, Larrea D, Guardia-Laguarta C, Montesinos J, Velasco KR, Agrawal RR, et al. Increased localization of APP ‐C99 in mitochondria‐associated ER membranes causes mitochondrial dysfunction in alzheimer disease. EMBO J. 2017;36(22):3356–71. PubMed PMC

Chia CW, Egan JM, Ferrucci L. Age-related changes in glucose metabolism, hyperglycemia, and cardiovascular risk. Circ Res. 2018;123(7):886–904. PubMed PMC

Kumar V, Kim SH, Bishayee K. Dysfunctional glucose metabolism in alzheimer’s disease onset and potential Pharmacological interventions. Int J Mol Sci. 2022;23(17):9540. PubMed PMC

Maher AC, Akhtar M, Tarnopolsky MA. Men supplemented with 17β-estradiol have increased β-oxidation capacity in skeletal muscle. Physiol Genom. 2010;42(3):342–7. PubMed

Kitamura K, Erlangga JS, Tsukamoto S, Sakamoto Y, Mabashi-Asazuma H, Iida K. Daidzein promotes the expression of oxidative phosphorylation- and fatty acid oxidation-related genes via an estrogen-related receptor α pathway to decrease lipid accumulation in muscle cells. J Nutr Biochem. 2020;77:108315. PubMed

Toda K, Takeda K, Akira S, Saibara T, Okada T, Onishi S, et al. Alternations in hepatic expression of fatty-acid metabolizing enzymes in ArKO mice and their reversal by the treatment with 17β-estradiol or a peroxisome proliferator. J Steroid Biochem Mol Biol. 2001;79(1–5):11–7. PubMed

Houten SM, Wanders RJA. A general introduction to the biochemistry of mitochondrial fatty acid β-oxidation. J Inher Metab Disea. 2010;33(5):469–77. PubMed PMC

Duran-Aniotz C, Hetz C. Glucose metabolism: A sweet relief of alzheimer’s disease. Curr Biol. 2016;26(17):R806–9. PubMed

Zhao J, Lang M. New insight into protein glycosylation in the development of alzheimer’s disease. Cell Death Discov. 2023;9(1):314. PubMed PMC

Yan X, Hu Y, Wang B, Wang S, Zhang X. Metabolic dysregulation contributes to the progression of alzheimer’s disease. Front Neurosci. 2020;14:530219. PubMed PMC

Hipkiss AR, Aging. Alzheimer’s disease and dysfunctional glycolysis; similar effects of too much and too little. Aging Disease. 2019;10(6):1328. PubMed PMC

Bell SM, Burgess T, Lee J, Blackburn DJ, Allen SP, Mortiboys H. Peripheral Glycolysis in neurodegenerative diseases. IJMS. 2020;21(23):8924. PubMed PMC

Bobba A, Atlante A, Azzariti A, Sgaramella G, Calissano P, Marra E. Mitochondrial impairment induces excitotoxic death in cerebellar granule cells. Int J Mol Med [Internet]. 2004 Jun 1 [cited 2024 Oct 11]; Available from: http://www.spandidos-publications.com/10.3892/ijmm.13.6.873 PubMed

Zhelev Z, Sumiyoshi A, Aoki I, Lazarova D, Vlaykova T, Higashi T, et al. Over-Reduced state of mitochondria as a trigger of β-Oxidation shuttle in Cancer cells. Cancers (Basel). 2022;14(4):871. PubMed PMC

Lee H, Woo SM, Jang H, Kang M, Kim SY. Cancer depends on fatty acids for ATP production: A possible link between cancer and obesity. Sem Cancer Biol. 2022;86:347–57. PubMed

Reed MN, Hofmeister JJ, Jungbauer L, Welzel AT, Yu C, Sherman MA, et al. Cognitive effects of cell-derived and synthetically derived Aβ oligomers. Neurobiol Aging. 2011;32(10):1784–94. PubMed PMC

Ono K, Condron MM, Teplow DB. Structure–neurotoxicity relationships of amyloid β-protein oligomers. Proc Natl Acad Sci USA. 2009;106(35):14745–50. PubMed PMC

Oppermann UCT, Salim S, Tjernberg LO, Terenius L, Jörnvall H. Binding of amyloid β-peptide to mitochondrial hydroxyacyl-CoA dehydrogenase (ERAB): regulation of an SDR enzyme activity with implications for apoptosis in alzheimer’s disease. FEBS Lett. 1999;451(3):238–42. PubMed

Powell AJ, Read JA, Banfield MJ, Gunn-Moore F, Yan SD, Lustbader J, et al. Recognition of structurally diverse substrates by type II 3-hydroxyacyl-CoA dehydrogenase (HADH II)/Amyloid-β binding alcohol dehydrogenase (ABAD)1. J Mol Biol. 2000;303(2):311–27. PubMed

Yan Y, Liu Y, Sorci M, Belfort G, Lustbader JW, Yan SS, et al. Surface plasmon resonance and nuclear magnetic resonance studies of ABAD-Abeta interaction. Biochemistry. 2007;46(7):1724–31. PubMed

Mrdenovic D, Lipkowski J, Pieta P. Analyzing morphological properties of early-stage toxic amyloid β oligomers by atomic force microscopy. In: Cranfield CG, editor. Membrane lipids [Internet]. New York, NY: Springer US; 2022 [cited 2024 Oct 2]. 227–41. (Methods in Molecular Biology; vol. 2402). Available from: https://link.springer.com/10.1007/978-1-0716-1843-1_18 PubMed

García-Ayllón MS, Lopez-Font I, Boix CP, Fortea J, Sánchez-Valle R, Lleó A, et al. C-terminal fragments of the amyloid precursor protein in cerebrospinal fluid as potential biomarkers for alzheimer disease. Sci Rep. 2017;7(1):2477. PubMed PMC

Podlisny MB, Mammen AL, Schlossmacher MG, Palmert MR, Younkin SG, Selkoe DJ. Detection of soluble forms of the β-amyloid precursor protein in human plasma. Biochem Biophys Res Commun. 1990;167(3):1094–101. PubMed

Rose C, Peoc’h K, Chasseigneaux S, Paquet C, Dumurgier J, Bourasset F, et al. New highly sensitive rodent and human tests for soluble amyloid precursor protein alpha quantification: preclinical and clinical applications in alzheimer’s disease. BMC Neurosci. 2012;13(1):84. PubMed PMC

Araki W, Hattori K, Kanemaru K, Yokoi Y, Omachi Y, Takano H, et al. Re-evaluation of soluble APP-α and APP-β in cerebrospinal fluid as potential biomarkers for early diagnosis of dementia disorders. Biomark Res. 2017;5(1):28. PubMed PMC

Kang JH, Korecka M, Toledo JB, Trojanowski JQ, Shaw LM. Clinical utility and analytical challenges in measurement of cerebrospinal fluid Amyloid-β1–42 and τ proteins as alzheimer disease biomarkers. Clin Chem. 2013;59(6):903–16. PubMed PMC

Shigemizu D, Asanomi Y, Akiyama S, Mitsumori R, Niida S, Ozaki K. Whole-genome sequencing reveals novel ethnicity-specific rare variants associated with alzheimer’s disease. Mol Psychiatry. 2022;27(5):2554–62. PubMed PMC

Hernandez-Rapp J, Rainone S, Goupil C, Dorval V, Smith PY, Saint-Pierre M, et al. microRNA-132/212 deficiency enhances Aβ production and senile plaque deposition in alzheimer’s disease triple Transgenic mice. Sci Rep. 2016;6(1):30953. PubMed PMC

Leal NS, Schreiner B, Pinho CM, Filadi R, Wiehager B, Karlström H, et al. Mitofusin-2 knockdown increases ER–mitochondria contact and decreases amyloid β‐peptide production. J Cell Mol Medi. 2016;20(9):1686–95. PubMed PMC

Khan I, Krishnaswamy S, Sabale M, Groth D, Wijaya L, Morici M, et al. Efficient production of a mature and functional gamma secretase protease. Sci Rep. 2018;8(1):12834. PubMed PMC

Shaw G, Morse S, Ararat M, Graham FL. Preferential transformation of human neuronal cells by human adenoviruses and the origin of HEK 293 cells. FASEB J. 2002;16(8):869–71. PubMed

Thomas P, Smart TG. HEK293 cell line: A vehicle for the expression of Recombinant proteins. J Pharmacol Toxicol Methods. 2005;51(3):187–200. PubMed

Daulatzai MA. Cerebral hypoperfusion and glucose hypometabolism: key pathophysiological modulators promote neurodegeneration, cognitive impairment, and alzheimer’s disease. J Neurosci Res. 2017;95(4):943–72. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...