Novel Benzothiazole-based Ureas as 17β-HSD10 Inhibitors, A Potential Alzheimer's Disease Treatment
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/18_069/0010054
Ministry of Education, Youth and Sports of Czech Republic
Faculty of Science, no. VT2019-2021, SV2115-2018
University of Hradec Kralove
40th Anniversary Award
RS MacDonald Charitable Trust
291
Alzheimer's Society - United Kingdom
ISSF3 University of St Andrews
WT-ISSF
A2216
Rosetrees Trust
PubMed
31362457
PubMed Central
PMC6696238
DOI
10.3390/molecules24152757
PII: molecules24152757
Knihovny.cz E-zdroje
- Klíčová slova
- 17β-hydroxysteroid dehydrogenase type 10 (17β-HSD10), amyloid binding alcohol dehydrogenase (ABAD), benzothiazole, Alzheimer’s disease (AD), amyloid-beta peptide (Aβ), mitochondria,
- MeSH
- 17-hydroxysteroidní dehydrogenasy antagonisté a inhibitory chemie MeSH
- Alzheimerova nemoc farmakoterapie MeSH
- amyloidní beta-protein metabolismus MeSH
- benzothiazoly chemie MeSH
- buněčné linie MeSH
- lidé MeSH
- mitochondrie metabolismus MeSH
- močovina chemie MeSH
- molekulární struktura MeSH
- racionální návrh léčiv MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- 17-hydroxysteroidní dehydrogenasy MeSH
- amyloidní beta-protein MeSH
- benzothiazoly MeSH
- močovina MeSH
: It has long been established that mitochondrial dysfunction in Alzheimer's disease (AD) patients can trigger pathological changes in cell metabolism by altering metabolic enzymes such as the mitochondrial 17β-hydroxysteroid dehydrogenase type 10 (17β-HSD10), also known as amyloid-binding alcohol dehydrogenase (ABAD). We and others have shown that frentizole and riluzole derivatives can inhibit 17β-HSD10 and that this inhibition is beneficial and holds therapeutic merit for the treatment of AD. Here we evaluate several novel series based on benzothiazolylurea scaffold evaluating key structural and activity relationships required for the inhibition of 17β-HSD10. Results show that the most promising of these compounds have markedly increased potency on our previously published inhibitors, with the most promising exhibiting advantageous features like low cytotoxicity and target engagement in living cells.
Biomedical Science Research Complex University of St Andrews North Haugh St Andrews KY16 9ST UK
University Hospital Biomedical Research Center Sokolska 581 500 05 Hradec Kralove Czech Republic
Zobrazit více v PubMed
Muirhead K.E.A., Borger E., Aitken L., Conway S., Gunn-Moore F.J. The consequences of mitochondrial amyloid beta peptide in Alzheimer’s disease. Biochem. J. 2010;426:255–270. doi: 10.1042/BJ20091941. PubMed DOI
Borger E., Aitken L., Muirhead K., Ainge J., Conway S., Gunn-Moore F.J. Models for mitochondrial involvement in Alzheimer’s Disease. Biochem Soc. Trans. 2011;39:868–873. doi: 10.1042/BST0390868. PubMed DOI
Benek O., Aitken L., Hroch L., Kuca K., Gunn-Moore F., Musilek K. A Direct interaction between mitochondrial proteins and amyloid-β peptide and its significance for the progression and treatment of Alzheimer’s disease. Curr. Med. Chem. 2015;22:1056–1085. doi: 10.2174/0929867322666150114163051. PubMed DOI
Yao J., Irwin R.W., Zhao L., Nilsen J., Hamilton R.T., Brinton R.D. Mitochondrial bioenergetic deficit precedes Alzheimer’s pathology in female mouse model of Alzheimer’s disease. Proc. Natl. Acad. Sci. USA. 2009;106:14670–14675. doi: 10.1073/pnas.0903563106. PubMed DOI PMC
Lustbader J.W., Cirilli M., Lin C., Xu H.W., Takuma K., Wang N., Caspersen C., Chen X., Pollak S., Chaney M., et al. ABAD Directly Links Aß to Mitochondrial Toxicity in Alzheimer’s Disease. Science. 2004;304:448–452. doi: 10.1126/science.1091230. PubMed DOI
Lauretti E., Li J.-G., Di Meco A., Praticò D. Glucose deficit triggers tau pathology and synaptic dysfunction in a tauopathy mouse model. Transl. Psychiatry. 2017;7:e1020. doi: 10.1038/tp.2016.296. PubMed DOI PMC
Lim Y.-A., Grimm A., Giese M., Mensah-Nyagan A.G., Villafranca J.E., Ittner L.M., Eckert A., Götz J. Inhibition of the Mitochondrial Enzyme ABAD Restores the Amyloid-β-Mediated Deregulation of Estradiol. PLoS ONE. 2011;6:e28887. doi: 10.1371/journal.pone.0028887. PubMed DOI PMC
Valasani K.R., Sun Q., Hu G., Li J., Du F., Guo Y., Carlson E.A., Gan X., Yan S.S. Identification of Human ABAD Inhibitors for Rescuing Aβ-Mediated Mitochondrial Dysfunction. Curr. Alzheimer Res. 2014;11:128–136. doi: 10.2174/1567205011666140130150108. PubMed DOI PMC
Hroch L., Benek O., Guest P., Aitken L., Soukup O., Janockova J., Musil K., Dohnal V., Dolezal R., Kuca K., et al. Design, synthesis and in vitro evaluation of benzothiazole-based ureas as potential ABAD/17β-HSD10 modulators for Alzheimer’s disease treatment. Bioorganic Med. Chem. Lett. 2016;26:3675–3678. doi: 10.1016/j.bmcl.2016.05.087. PubMed DOI
Hroch L., Guest P., Benek O., Soukupb O., Janockovab J., Dolezal R., Kuca K., Aitken L., Smith T.K., Gunn-Moore F., et al. Synthesis and evaluation of frentizole-based indolyl thiourea analogues as MAO/ABAD inhibitors for Alzheimer’s disease treatment. Bioorganic Med. Chem. 2017;25:1143–1152. doi: 10.1016/j.bmc.2016.12.029. PubMed DOI
Benek O., Hroch L., Aitken L., Dolezal R., Guest P., Benkova M., Soukup O., Musil K., Hughes R., Kuca K., et al. 6-benzothiazolyl ureas, thioureas and guanidines are potent inhibitors of ABAD/17β-HSD10 and potential drugs for Alzheimer’s disease treatment: Design, synthesis and in vitro evaluation. Med. Chem. 2017;13:345–358. doi: 10.2174/1573406413666170109142725. PubMed DOI
Xiao X., Chen Q., Zhu X., Wang Y. ABAD/17β-HSD10 reduction contributes to the protective mechanism of huperzine a on the cerebral mitochondrial function in APP/PS1 mice. Neurobiol. Aging. 2019;81:77–87. doi: 10.1016/j.neurobiolaging.2019.05.016. PubMed DOI
Du Yan S., Fu J., Soto C., Chen X., Zhu H., Al-Mohanna F., Collison K., Zhu A., Stern E., Saido T., et al. An intracellular protein that binds amyloid-β peptide and mediates neurotoxicity in Alzheimer’s disease. Nature. 1997;389:689–695. doi: 10.1038/39522. PubMed DOI
Yao J., Taylor M., Davey F., Ren Y., Aiton J., Coote P., Fang F., Chen J.X., Yan S.D., Gunn-Moore F.J. Interaction of amyloid binding alcohol dehydrogenase/Abeta mediates up-regulation of peroxiredoxin II in the brains of Alzheimer’s disease patients and a transgenic Alzheimer’s disease mouse model. Mol. Cell. Neurosci. 2007;35:377–382. doi: 10.1016/j.mcn.2007.03.013. PubMed DOI
Oppermann U.C.T., Salim S., Tjernberg L.O., Terenius L., Jörnvall H. Binding of amyloid β-peptide to mitochondrial hydroxyacyl-CoA dehydrogenase (ERAB): Regulation of an SDR enzyme activity with implications for apoptosis in Alzheimer’s disease. FEBS Lett. 1999;451:238–242. doi: 10.1016/S0014-5793(99)00586-4. PubMed DOI
Du Yan S., Shi Y., Zhu A., Fu J., Zhu H., Zhu Y., Gibson L., Stern E., Collison K., Al-Mohanna F., et al. Role of ERAB/l-3-Hydroxyacyl-coenzyme A Dehydrogenase Type II Activity in Aβ-induced Cytotoxicity. J. Biol. Chem. 1999;274:2145–2156. doi: 10.1074/jbc.274.4.2145. PubMed DOI
Valasani K.R., Hu G., Chaney F.O., Yan W.S.S. Structure Based Design and Synthesis of Benzothiazole Phosphonate Analogues with Inhibitors of Human ABAD-Aβ for Treatment of Alzheimer’s Disease. Chem. Biol. Drug Des. 2013;81:238–249. doi: 10.1111/cbdd.12068. PubMed DOI PMC
Yan J.G., Tang R.Y., Zhong P., Li J.H. Copper-catalysed tandem reactions of 2-halobenzenamines with isothiocyanates under ligand- and base-free conditions. Tetrahedron Lett. 2010;51:649–652.
Aitken L., Baillie G., Pannifer A., Morrison A., Jones P., Smith T., McElroy S., Gunn-Moore F. In Vitro Assay Development and HTS of Small Molecule Human ABAD/17β-HSD10 Inhibitors as Therapeutics in Alzheimer’s Disease. SLAS Discov. 2017;22:676–685. doi: 10.1177/2472555217697964. PubMed DOI
Kissinger C.R., Rejto P.A., Pelletier L.A., Thomson J.A., Showalter R.E., Abreo M.A., Agree C.S., Margosiak S., Meng J.J., Aust R.M., et al. Crystal Structure of Human ABAD/HSD10 with a Bound Inhibitor: Implications for Design of Alzheimer’s Disease Therapeutics. J. Mol. Biol. 2004;342:943–952. doi: 10.1016/j.jmb.2004.07.071. PubMed DOI
Muirhead K.E.A., Froemming M., Li X., Musilek K., Conway S.J., Sames D., Gunn-Moore F.J. (−)-CHANA, a Fluorogenic Probe for Detecting Amyloid Binding Alcohol Dehydrogenase HSD10 Activity in Living Cells. ACS Chem. Biol. 2010;5:1105–1114. doi: 10.1021/cb100199m. PubMed DOI
Aitken L., Quinn S.D., Perez Gonzalez D.C., Samuel I.D.W., Penedo-Esteiro J.C., Gunn-Moore F.J. Morphology-specific inhibition of β-amyloid aggregates by 17β-hydroxysteroid dehydrogenase type 10. ChemBioChem. 2016;17:1029–1037. doi: 10.1002/cbic.201600081. PubMed DOI
Aitken L., Benek O., McKelvie B., Hughes R., Hroch L., Major L.L., Kuca K., Smith T.K., Musilek K., Gunn-Moore F.J. Data Underpinning: Novel Benzothiazole-Based Ureas as 17β-HSD10 Inhibitors, a Potential Alzheimer’s Disease Treatment. Dataset. University of St. Andrews, Research Portal; St. Andrews, Scotland: 2018. DOI
C-3 Steroidal Hemiesters as Inhibitors of 17β-Hydroxysteroid Dehydrogenase Type 10
Nanomolar Benzothiazole-Based Inhibitors of 17β-HSD10 with Cellular Bioactivity