C-3 Steroidal Hemiesters as Inhibitors of 17β-Hydroxysteroid Dehydrogenase Type 10
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
38496976
PubMed Central
PMC10938439
DOI
10.1021/acsomega.3c10148
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
17β-HSD10 is a mitochondrial enzyme that catalyzes the steroidal oxidation of a hydroxy group to a keto group and, thus, is involved in maintaining steroid homeostasis. The druggability of 17β-HSD10 is related to potential treatment for neurodegenerative diseases, for example, Alzheimer's disease or cancer. Herein, steroidal derivatives with an acidic hemiester substituent at position C-3 on the skeleton were designed, synthesized, and evaluated by using pure recombinant 17β-HSD10 converting 17β-estradiol to estrone. Compounds 22 (IC50 = 6.95 ± 0.35 μM) and 23 (IC50 = 5.59 ± 0.25 μM) were identified as the most potent inhibitors from the series. Compound 23 inhibited 17β-HSD10 activity regardless of the substrate. It was found not cytotoxic toward the HEK-293 cell line and able to inhibit 17β-HSD10 activity also in the cellular environment. Together, these findings support steroidal compounds as promising candidates for further development as 17β-HSD10 inhibitors.
Zobrazit více v PubMed
He X.-Y.; Merz G.; Yang Y.-Z.; Mehta P.; Schulz H.; Yang S.-Y. Characterization and localization of human type10 17b-hydroxysteroid dehydrogenase. Eur. J. Biochem. 2001, 268, 4899–4907. 10.1046/j.0014-2956.2001.02421.2421.x. PubMed DOI
Wohlfarter Y.; Eidelpes R.; Yu R. D.; Sailer S.; Koch J.; Karall D.; Scholl-Bürgi S.; Amberger A.; Hillen H. S.; Zschocke J.; et al. ost in promiscuity? An evolutionary and biochemical evaluation of HSD10 function in cardiolipin metabolism. Cell. Mol. Life Sci. 2022, 79 (11), 562. PubMed PMC
He X. Y.; Merz G.; Mehta P.; Schulz H.; Yang S. Y. Human brain short chain L-3-hydroxyacyl coenzyme A dehydrogenase is a single-domain multifunctional enzyme. Characterization of a novel 17beta-hydroxysteroid dehydrogenase. J. Biol. Chem. 1999, 274 (21), 15014–15019. 10.1074/jbc.274.21.15014. PubMed DOI
Carlson E. A.; Marquez R. T.; Du F.; Wang Y.; Xu L.; Yan S. S. Overexpression of 17β-hydroxysteroid dehydrogenase type 10 increases pheochromocytoma cell growth and resistance to cell death. BMC Cancer 2015, 15, 166.10.1186/s12885-015-1173-5. PubMed DOI PMC
Yang S. Y.; He X. Y.; Isaacs C.; Dobkin C.; Miller D.; Philipp M. Roles of 17β-hydroxysteroid dehydrogenase type 10 in neurodegenerative disorders. J. Steroid Biochem. Mol. Biol. 2014, 143, 460–472. 10.1016/j.jsbmb.2014.07.001. PubMed DOI
Zhang A.; Zhang J.; Plymate S.; Mostaghel E. A. Classical and Non-Classical Roles for Pre-Receptor Control of DHT Metabolism in Prostate Cancer Progression. Horm Cancer 2016, 7 (2), 104–113. 10.1007/s12672-016-0250-9. PubMed DOI PMC
Snaterse G.; van Dessel L. F.; van Riet J.; Taylor A. E.; van der.; Vlugt-Daane M.; Hamberg P.; de Wit R.; Visser J. A.; Arlt W.; Lolkema M. P.. et al.11-Ketotestosterone is the predominant active androgen in prostate cancer patients after castration JCI Insight, 2021, 6 ((11)), . PubMed PMC
Salas S.; Jézéquel P.; Campion L.; Deville J. L.; Chibon F.; Bartoli C.; Gentet J. C.; Charbonnel C.; Gouraud W.; Voutsinos-Porche B.; et al. Molecular characterization of the response to chemotherapy in conventional osteosarcomas: predictive value of HSD17B10 and IFITM2. Int. J. Cancer 2009, 125 (4), 851–860. 10.1002/ijc.24457. PubMed DOI
Porcu P.; Barron A. M.; Frye C. A.; Walf A. A.; Yang S. Y.; He X. Y.; Morrow A. L.; Panzica G. C.; Melcangi R. C. Neurosteroidogenesis Today: Novel Targets for Neuroactive Steroid Synthesis and Action and Their Relevance for Translational Research. J. Neuroendocrinol. 2016, 28 (2), 12351.10.1111/jne.12351. PubMed DOI PMC
Vinklarova L.; Schmidt M.; Benek O.; Kuca K.; Gunn-Moore F.; Musilek K. Friend or enemy? Review of 17β-HSD10 and its role in human health or disease. J. Neurochem 2020, 155 (3), 231–249. 10.1111/jnc.15027. PubMed DOI
Schmidt M.; Benek O.; Vinklarova L.; Hrabinova M.; Zemanova L.; Chribek M.; Kralova V.; Hroch L.; Dolezal R.; Lycka A.; et al. Benzothiazolyl Ureas are Low Micromolar and Uncompetitive Inhibitors of 17β-HSD10 with Implications to Alzheimer’s Disease Treatment. Int. J. Mol. Sci. 2020, 21 (6), 2059.10.3390/ijms21062059. PubMed DOI PMC
Benek O.; Hroch L.; Aitken L.; Dolezal R.; Guest P.; Benkova M.; Soukup O.; Musil K.; Kuca K.; Smith T. K.; et al. 6-benzothiazolyl ureas, thioureas and guanidines are potent inhibitors of ABAD/17β-HSD10 and potential drugs for Alzheimer’s disease treatment: Design, synthesis and in vitro evaluation. Med. Chem. 2017, 13 (7), 345–358. 10.2174/1573406413666170109142725. PubMed DOI
Aitken L.; Benek O.; McKelvie B. E.; Hughes R. E.; Hroch L.; Schmidt M.; Major L. L.; Vinklarova L.; Kuca K.; Smith T. K.; et al. Novel Benzothiazole-based Ureas as 17β-HSD10 Inhibitors, A Potential Alzheimer’s Disease Treatment. Molecules 2019, 24 (15), 2757.10.3390/molecules24152757. PubMed DOI PMC
Benek O.; Vaskova M.; Miskerikova M.; Schmidt M.; Andrys R.; Rotterova A.; Skarka A.; Hatlapatkova J.; Zdarova Karasova J.; Hroch L.; et al. Development of submicromolar 17β-HSD10 inhibitors and their in vitro and in vivo evaluation. Eur. J. Med. Chem. 2023, 258, 11559310.1016/j.ejmech.2023.115593. PubMed DOI
Schmidt M.; Vaskova M.; Rotterova A.; Benek O.; Fiandova P.; Miskerikova M.; Zemanova L.; Musilek K. Physiologically relevant fluorescent assay for identification of 17β-HSD10 inhibitors. J. Neurochem. 2023, 167 (2), 154–167. 10.1111/jnc.15917. PubMed DOI
Kissinger C. R.; Rejto P. A.; Pelletier L. A.; Thomson J. A.; Showalter R. E.; Abreo M. A.; Agree C. S.; Margosiak S.; Meng J. J.; Aust R. M.; et al. Crystal structure of human ABAD/HSD10 with a bound inhibitor: implications for design of Alzheimer’s disease therapeutics. J. Mol. Biol. 2004, 342 (3), 943–952. 10.1016/j.jmb.2004.07.071. PubMed DOI
Morsy A.; Maddeboina K.; Gao J.; Wang H.; Valdez J.; Dow L. F.; Wang X.; Trippier P. C. Functionalized Allopurinols Targeting Amyloid-Binding Alcohol Dehydrogenase Rescue Aβ-Induced Mitochondrial Dysfunction. ACS Chem. Neurosci. 2022, 13 (14), 2176–2190. 10.1021/acschemneuro.2c00246. PubMed DOI
Ayan D.; Maltais R.; Poirier D. Identification of a 17β-hydroxysteroid dehydrogenase type 10 steroidal inhibitor: a tool to investigate the role of type 10 in Alzheimer’s disease and prostate cancer. ChemMedChem 2012, 7 (7), 1181–1184. 10.1002/cmdc.201200129. PubMed DOI
Boutin S.; Roy J.; Maltais R.; Alata W.; Calon F.; Poirier D. Identification of steroidal derivatives inhibiting the transformations of allopregnanolone and estradiol by 17β-hydroxysteroid dehydrogenase type 10. Bioorg. Med. Chem. Lett. 2018, 28 (22), 3554–3559. 10.1016/j.bmcl.2018.09.031. PubMed DOI
Boutin S.; Maltais R.; Roy J.; Poirier D. Synthesis of 17β-hydroxysteroid dehydrogenase type 10 steroidal inhibitors: Selectivity, metabolic stability and enhanced potency. Eur. J. Med. Chem. 2021, 209, 11290910.1016/j.ejmech.2020.112909. PubMed DOI
Dilly S. J.; Clark A. J.; Marsh A.; Mitchell D. A.; Cain R.; Fishwick C. W. G.; Taylor P. C. A chemical genomics approach to drug reprofiling in oncology: Antipsychotic drug risperidone as a potential adenocarcinoma treatment. Cancer Lett. 2017, 393, 16–21. 10.1016/j.canlet.2017.01.042. PubMed DOI
Metodieva V.; Smith T.; Gunn-Moore F. The Mitochondrial Enzyme 17βHSD10 Modulates Ischemic and Amyloid-β-Induced Stress in Primary Mouse Astrocytes. eNeuro 2022, 9 (5), ENEURO.0040-22.2022.10.1523/ENEURO.0040-22.2022. PubMed DOI PMC
Pinna G.; Almeida F. B.; Davis J. M. Allopregnanolone in Postpartum Depression. Front Glob Womens Health 2022, 3, 82361610.3389/fgwh.2022.823616. PubMed DOI PMC
Cornett E. M.; Rando L.; Labbé A. M.; Perkins W.; Kaye A. M.; Kaye A. D.; Viswanath O.; Urits I. Brexanolone to Treat Postpartum Depression in Adult Women. Psychopharmacol Bull. 2021, 51 (2), 115–130. PubMed PMC
Lamb Y. N. Ganaxolone: First Approval. Drugs 2022, 82 (8), 933–940. 10.1007/s40265-022-01724-0. PubMed DOI
Hamilton N. M.; Dawson M.; Fairweather E. E.; Hamilton N. S.; Hitchin J. R.; James D. I.; Jones S. D.; Jordan A. M.; Lyons A. J.; Small H. F.; et al. Novel steroid inhibitors of glucose 6-phosphate dehydrogenase. J. Med. Chem. 2012, 55 (9), 4431–4445. 10.1021/jm300317k. PubMed DOI
MacNevin C. J.; Atif F.; Sayeed I.; Stein D. G.; Liotta D. C. Development and screening of water-soluble analogues of progesterone and allopregnanolone in models of brain injury. J. Med. Chem. 2009, 52 (19), 6012–6023. 10.1021/jm900712n. PubMed DOI
Tserfas M. O.; Levina I. S.; Kuznetsov Y. V.; Scherbakov A. M.; Mikhaevich E. I.; Zavarzin I. V. Selective synthesis of the two main progesterone metabolites, 3α-hydroxy-5α-pregnanolone (allopregnanolone) and 3α-hydroxypregn-4-en-20-one, and an assessment of their effect on proliferation of hormone-dependent human breast cancer cells. Russian Chem. Bull. 2020, 69, 552–557. 10.1007/s11172-020-2797-4. DOI
Kudova E.; Chodounska H.; Slavikova B.; Budesinsky M.; Nekardova M.; Vyklicky V.; Krausova B.; Svehla P.; Vyklicky L. A New Class of Potent N-Methyl-D-Aspartate Receptor Inhibitors: Sulfated Neuroactive Steroids with Lipophilic D-Ring Modifications. J. Med. Chem. 2015, 58 (15), 5950–5966. 10.1021/acs.jmedchem.5b00570. PubMed DOI
Xu S.; Toyama T.; Nakamura J.; Arimoto H. One-pot reductive cleavage of exo-olefin to methylene with a mild ozonolysis-Clemmensen reduction sequence. Tetrahedron Lett. 2010, 51 (34), 4534–4537. 10.1016/j.tetlet.2010.06.102. DOI
Matousova M.; Soucek R.; Tloustova E.; Slavikova B.; Chodounska H.; Mertlikova-Kaiserova H.; Kudova E. Pregn-5-en-3β-ol and androst-5-en-3β-ol dicarboxylic acid esters as potential therapeutics for NMDA hypofunction: In vitro safety assessment and plasma stability. Steroids 2019, 147, 4–9. 10.1016/j.steroids.2018.09.012. PubMed DOI
Artursson P.; Karlsson J. Correlation between oral drug absorption in humans and apparent drug permeability coefficients in human intestinal epithelial (Caco-2) cells. Biochem. Biophys. Res. Commun. 1991, 175 (3), 880–885. 10.1016/0006-291X(91)91647-U. PubMed DOI
Rubas W.; Jezyk N.; Grass G. M. Comparison of the permeability characteristics of a human colonic epithelial (Caco-2) cell line to colon of rabbit, monkey, and dog intestine and human drug absorption. Pharm. Res. 1993, 10 (1), 113–118. 10.1023/A:1018937416447. PubMed DOI
Krausova B.; Slavikova B.; Nekardova M.; Hubalkova P.; Vyklicky V.; Chodounska H.; Vyklicky L.; Kudova E. Positive Modulators of the N-Methyl-d-aspartate Receptor: Structure-Activity Relationship Study of Steroidal 3-Hemiesters. J. Med. Chem. 2018, 61 (10), 4505–4516. 10.1021/acs.jmedchem.8b00255. PubMed DOI