Evolution of retinal degeneration and prediction of disease activity in relapsing and progressive multiple sclerosis
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
PubMed
38897994
PubMed Central
PMC11187157
DOI
10.1038/s41467-024-49309-7
PII: 10.1038/s41467-024-49309-7
Knihovny.cz E-zdroje
- MeSH
- chronicko-progresivní roztroušená skleróza * diagnostické zobrazování patologie patofyziologie MeSH
- degenerace retiny * diagnostické zobrazování patologie MeSH
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- magnetická rezonanční tomografie metody MeSH
- nervová vlákna patologie MeSH
- optická koherentní tomografie * metody MeSH
- prognóza MeSH
- progrese nemoci * MeSH
- relabující-remitující roztroušená skleróza * diagnostické zobrazování patologie patofyziologie MeSH
- retina * diagnostické zobrazování patologie MeSH
- retinální gangliové buňky patologie MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
Retinal optical coherence tomography has been identified as biomarker for disease progression in relapsing-remitting multiple sclerosis (RRMS), while the dynamics of retinal atrophy in progressive MS are less clear. We investigated retinal layer thickness changes in RRMS, primary and secondary progressive MS (PPMS, SPMS), and their prognostic value for disease activity. Here, we analyzed 2651 OCT measurements of 195 RRMS, 87 SPMS, 125 PPMS patients, and 98 controls from five German MS centers after quality control. Peripapillary and macular retinal nerve fiber layer (pRNFL, mRNFL) thickness predicted future relapses in all MS and RRMS patients while mRNFL and ganglion cell-inner plexiform layer (GCIPL) thickness predicted future MRI activity in RRMS (mRNFL, GCIPL) and PPMS (GCIPL). mRNFL thickness predicted future disability progression in PPMS. However, thickness change rates were subject to considerable amounts of measurement variability. In conclusion, retinal degeneration, most pronounced of pRNFL and GCIPL, occurs in all subtypes. Using the current state of technology, longitudinal assessments of retinal thickness may not be suitable on a single patient level.
Aix Marseille University CNRS CRMBM UMR 7339 Marseille France
APHM La Timone CEMEREM Marseille France
Biomedical Center Faculty of Medicine Ludwig Maximilians University München München Germany
Brain and Mind Center University of Sydney Sydney NSW Australia
Department of Neurology Kliniken Maria Hilf Mönchengladbach Germany
Department of Neurology Palacky University Olomouc Olomouc Czech Republic
Department of Neurology University Medical Centre Hamburg Eppendorf Hamburg Germany
Zobrazit více v PubMed
Saidha S, et al. Optical coherence tomography reflects brain atrophy in multiple sclerosis: a four-year study. Ann. Neurol. 2015;78:801–813. doi: 10.1002/ana.24487. PubMed DOI PMC
Sotirchos ES, Saidha S. OCT is an alternative to MRI for monitoring MS - YES. Mult. Scler. 2018;24:701–703. doi: 10.1177/1352458517753722. PubMed DOI
Albrecht P, et al. Degeneration of retinal layers in multiple sclerosis subtypes quantified by optical coherence tomography. Mult. Scler. 2012;18:1422–1429. doi: 10.1177/1352458512439237. PubMed DOI
Lambe, J. et al. Association of spectral-domain OCT with long-term disability worsening in multiple sclerosis. Neurology96, e2058–e2069 (2021). PubMed PMC
Martinez-Lapiscina EH, et al. Retinal thickness measured with optical coherence tomography and risk of disability worsening in multiple sclerosis: a cohort study. Lancet Neurol. 2016;15:574–584. doi: 10.1016/S1474-4422(16)00068-5. PubMed DOI
Albrecht P, Frohlich R, Hartung HP, Kieseier BC, Methner A. Optical coherence tomography measures axonal loss in multiple sclerosis independently of optic neuritis. J. Neurol. 2007;254:1595–1596. doi: 10.1007/s00415-007-0538-3. PubMed DOI
Baetge SJ, et al. Association of retinal layer thickness with cognition in patients with multiple sclerosis. Neurol. Neuroimmunol. Neuroinflamm. 2021;8:e1018. doi: 10.1212/NXI.0000000000001018. PubMed DOI PMC
Bsteh G, et al. Macular ganglion cell-inner plexiform layer thinning as a biomarker of disability progression in relapsing multiple sclerosis. Mult. Scler. 2021;27:684–694. doi: 10.1177/1352458520935724. PubMed DOI
Bsteh G, et al. Retinal layer thinning predicts treatment failure in relapsing multiple sclerosis. Eur. J. Neurol. 2021;28:2037–2045. doi: 10.1111/ene.14829. PubMed DOI PMC
Bsteh G, et al. Retinal layer thinning is reflecting disability progression independent of relapse activity in multiple sclerosis. Mult. Scler. J. Exp. Transl. Clin. 2020;6:2055217320966344. PubMed PMC
Bsteh G, et al. Peripapillary retinal nerve fibre layer as measured by optical coherence tomography is a prognostic biomarker not only for physical but also for cognitive disability progression in multiple sclerosis. Mult. Scler. 2019;25:196–203. doi: 10.1177/1352458517740216. PubMed DOI
Bsteh G, et al. Peripapillary retinal nerve fibre layer thinning rate as a biomarker discriminating stable and progressing relapsing-remitting multiple sclerosis. Eur. J. Neurol. 2019;26:865–871. doi: 10.1111/ene.13897. PubMed DOI
Schurz N, et al. Evaluation of retinal layer thickness parameters as biomarkers in a real-world multiple sclerosis cohort. Eye Brain. 2021;13:59–69. doi: 10.2147/EB.S295610. PubMed DOI PMC
Pisa M, et al. No evidence of disease activity is associated with reduced rate of axonal retinal atrophy in MS. Neurology. 2017;89:2469–2475. doi: 10.1212/WNL.0000000000004736. PubMed DOI
Knier B, et al. Retinal inner nuclear layer volume reflects response to immunotherapy in multiple sclerosis. Brain J. Neurol. 2016;139:2855–2863. doi: 10.1093/brain/aww219. PubMed DOI
Rothman A, et al. Retinal measurements predict 10-year disability in multiple sclerosis. Ann. Clin. Transl. Neurol. 2019;6:222–232. doi: 10.1002/acn3.674. PubMed DOI PMC
Cordano C, et al. pRNFL as a marker of disability worsening in the medium/long term in patients with MS. Neurol. Neuroimmunol. Neuroinflamm. 2019;6:e533. doi: 10.1212/NXI.0000000000000533. PubMed DOI PMC
Lin TY, et al. Increased serum neurofilament light and thin ganglion cell-inner plexiform layer are additive risk factors for disease activity in early multiple sclerosis. Neurol. Neuroimmunol. Neuroinflamm. 2021;8:e1051. doi: 10.1212/NXI.0000000000001051. PubMed DOI PMC
Zimmermann HG, et al. Association of retinal ganglion cell layer thickness with future disease activity in patients with clinically isolated syndrome. JAMA Neurol. 2018;75:1071–1079. doi: 10.1001/jamaneurol.2018.1011. PubMed DOI PMC
Graves JS, et al. Leveraging visual outcome measures to advance therapy development in neuroimmunologic disorders. Neurol. Neuroimmunol. Neuroinflamm. 2022;9:e1126. doi: 10.1212/NXI.0000000000001126. PubMed DOI PMC
Lambe J, Murphy OC, Saidha S. Can optical coherence tomography be used to guide treatment decisions in adult or pediatric multiple sclerosis? Curr. Treat. Options Neurol. 2018;20:9. doi: 10.1007/s11940-018-0493-6. PubMed DOI
Bsteh, G. et al. Retinal layer thinning for monitoring disease-modifying treatment in relapsing multiple sclerosis—evidence for applying a rebaselining concept (P6-6.005). Neurology102, 1253 (2024).
Balk LJ, et al. Timing of retinal neuronal and axonal loss in MS: a longitudinal OCT study. J. Neurol. 2016;263:1323–1331. doi: 10.1007/s00415-016-8127-y. PubMed DOI PMC
Sotirchos ES, et al. Progressive multiple sclerosis is associated with faster and specific retinal layer atrophy. Ann. Neurol. 2020;87:885–896. doi: 10.1002/ana.25738. PubMed DOI PMC
Henderson AP, et al. A preliminary longitudinal study of the retinal nerve fiber layer in progressive multiple sclerosis. J. Neurol. 2010;257:1083–1091. doi: 10.1007/s00415-010-5467-x. PubMed DOI
Behbehani R, Adnan H, Al-Hassan AA, Al-Salahat A, Alroughani R. Predictors of retinal atrophy in multiple sclerosis: a longitudinal study using spectral domain optical coherence tomography with segmentation analysis. Mult. Scler. Relat. Disord. 2018;21:56–62. doi: 10.1016/j.msard.2018.02.010. PubMed DOI
Klumbies K, et al. Retinal thickness analysis in progressive multiple sclerosis patients treated with epigallocatechin gallate: optical coherence tomography results from the SUPREMES study. Front. Neurol. 2021;12:615790. doi: 10.3389/fneur.2021.615790. PubMed DOI PMC
Barro C, et al. Fluid biomarker and electrophysiological outcome measures for progressive MS trials. Mult. Scler. 2017;23:1600–1613. doi: 10.1177/1352458517732844. PubMed DOI
Hardmeier M, Leocani L, Fuhr P. A new role for evoked potentials in MS? Repurposing evoked potentials as biomarkers for clinical trials in MS. Mult. Scler. 2017;23:1309–1319. doi: 10.1177/1352458517707265. PubMed DOI PMC
Kurtzke JF. Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS) Neurology. 1983;33:1444–1452. doi: 10.1212/WNL.33.11.1444. PubMed DOI
Paul F, et al. Optical coherence tomography in multiple sclerosis: a 3-year prospective multicenter study. Ann. Clin. Transl. Neurol. 2021;8:2235–2251. doi: 10.1002/acn3.51473. PubMed DOI PMC
Saidha S, et al. Microcystic macular oedema, thickness of the inner nuclear layer of the retina, and disease characteristics in multiple sclerosis: a retrospective study. Lancet Neurol. 2012;11:963–972. doi: 10.1016/S1474-4422(12)70213-2. PubMed DOI PMC
Balk LJ, et al. Retinal inner nuclear layer volume reflects inflammatory disease activity in multiple sclerosis; a longitudinal OCT study. Mult. Scler. J. Exp. Transl. Clin. 2019;5:2055217319871582. PubMed PMC
Cellerino M, et al. Relationship between retinal inner nuclear layer, age, and disease activity in progressive MS. Neurol. Neuroimmunol. Neuroinflamm. 2019;6:e596. doi: 10.1212/NXI.0000000000000596. PubMed DOI PMC
Green AJ, McQuaid S, Hauser SL, Allen IV, Lyness R. Ocular pathology in multiple sclerosis: retinal atrophy and inflammation irrespective of disease duration. Brain J. Neurol. 2010;133:1591–1601. doi: 10.1093/brain/awq080. PubMed DOI PMC
Panda-Jonas S, Jonas JB, Jakobczyk-Zmija M. Retinal photoreceptor density decreases with age. Ophthalmology. 1995;102:1853–1859. doi: 10.1016/S0161-6420(95)30784-1. PubMed DOI
Balcer LJ, et al. Contrast letter acuity as a visual component for the Multiple Sclerosis Functional Composite. Neurology. 2003;61:1367–1373. doi: 10.1212/01.WNL.0000094315.19931.90. PubMed DOI
Balcer LJ, et al. Validity of low-contrast letter acuity as a visual performance outcome measure for multiple sclerosis. Mult. Scler. 2017;23:734–747. doi: 10.1177/1352458517690822. PubMed DOI PMC
Villoslada P, Cuneo A, Gelfand J, Hauser SL, Green A. Color vision is strongly associated with retinal thinning in multiple sclerosis. Mult. Scler. 2012;18:991–999. doi: 10.1177/1352458511431972. PubMed DOI
Pueyo V, et al. Axonal loss in the retinal nerve fiber layer in patients with multiple sclerosis. Mult. Scler. 2008;14:609–614. doi: 10.1177/1352458507087326. PubMed DOI
Klistorner A, et al. Long-term effect of permanent demyelination on axonal survival in multiple sclerosis. Neurol. Neuroimmunol. Neuroinflamm. 2022;9:e1155. doi: 10.1212/NXI.0000000000001155. PubMed DOI PMC
Berek K, et al. Retinal layer thinning as a biomarker of long-term disability progression in multiple sclerosis. Mult. Scler. 2022;28:1871–1880. doi: 10.1177/13524585221097566. PubMed DOI
Thompson AJ, et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 2018;17:162–173. doi: 10.1016/S1474-4422(17)30470-2. PubMed DOI
Schippling S, et al. Quality control for retinal OCT in multiple sclerosis: validation of the OSCAR-IB criteria. Mult. Scler. 2015;21:163–170. doi: 10.1177/1352458514538110. PubMed DOI
Tewarie P, et al. The OSCAR-IB consensus criteria for retinal OCT quality assessment. PloS One. 2012;7:e34823. doi: 10.1371/journal.pone.0034823. PubMed DOI PMC
Petzold A, et al. Optical coherence tomography in multiple sclerosis: a systematic review and meta-analysis. Lancet Neurol. 2010;9:921–932. doi: 10.1016/S1474-4422(10)70168-X. PubMed DOI
Nolan-Kenney RC, et al. Optimal intereye difference thresholds by optical coherence tomography in multiple sclerosis: an international study. Ann. Neurol. 2019;85:618–629. doi: 10.1002/ana.25462. PubMed DOI
Odom JV, et al. ISCEV standard for clinical visual evoked potentials: (2016 update) Doc. Ophthalmol. Adv. Ophthalmol. 2016;133:1–9. doi: 10.1007/s10633-016-9553-y. PubMed DOI
Aytulun, A., et al. The APOSTEL 2.0 recommendations for reporting quantitative optical coherence tomography studies. Neurology97, 68–79 (2021). PubMed PMC
Cruz-Herranz A, et al. The APOSTEL recommendations for reporting quantitative optical coherence tomography studies. Neurology. 2016;86:2303–2309. doi: 10.1212/WNL.0000000000002774. PubMed DOI PMC
Krämer, J., et al. Evolution of retinal degeneration and prediction of disease activity in relapsing and progressive multiple sclerosis; (1.0.0) [Data set]. Zenodo. 10.5281/zenodo.11106449 (2024). PubMed PMC
Hartmann, A., et al. Evolution of retinal degeneration and prediction of disease activity in relapsing and progressive multiple sclerosis; (1.0). Zenodo. 10.5281/zenodo.11096799 PubMed PMC