Terahertz Spin-Conductance Spectroscopy: Probing Coherent and Incoherent Ultrafast Spin Tunneling

. 2024 Jul 03 ; 24 (26) : 7852-7860. [epub] 20240621

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38904438

Thin-film stacks F|H consisting of a ferromagnetic-metal layer F and a heavy-metal layer H are spintronic model systems. Here, we present a method to measure the ultrabroadband spin conductance across a layer X between F and H at terahertz frequencies, which are the natural frequencies of spin-transport dynamics. We apply our approach to MgO tunneling barriers with thickness d = 0-6 Å. In the time domain, the spin conductance Gs has two components. An instantaneous feature arises from processes like coherent spin tunneling. Remarkably, a longer-lived component is a hallmark of incoherent resonant spin tunneling mediated by MgO defect states, because its relaxation time grows monotonically with d to as much as 270 fs at d = 6.0 Å. Our results are in full agreement with an analytical model. They indicate that terahertz spin-conductance spectroscopy will yield new and relevant insights into ultrafast spin transport in a wide range of spintronic nanostructures.

Zobrazit více v PubMed

del Alamo J. A. Nanometre-scale electronics with III–V compound semiconductors. Nature 2011, 479 (7373), 317–323. 10.1038/nature10677. PubMed DOI

Hillerkuss D.; Schmogrow R.; Schellinger T.; Jordan M.; Winter M.; Huber G.; Vallaitis T.; Bonk R.; Kleinow P.; Frey F.; Roeger M.; Koenig S.; Ludwig A.; Marculescu A.; Li J.; Hoh M.; Dreschmann M.; Meyer J.; Ben Ezra S.; Narkiss N.; Nebendahl B.; Parmigiani F.; Petropoulos P.; Resan B.; Oehler A.; Weingarten K.; Ellermeyer T.; Lutz J.; Moeller M.; Huebner M.; Becker J.; Koos C.; Freude W.; Leuthold J. 26 Tbit s–1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing. Nat. Photonics 2011, 5 (6), 364–371. 10.1038/nphoton.2011.74. DOI

Kirilyuk A.; Kimel A. V.; Rasing T. Ultrafast optical manipulation of magnetic order. Rev. Mod. Phys. 2010, 82 (3), 2731–2784. 10.1103/RevModPhys.82.2731. DOI

Kampfrath T.; Battiato M.; Maldonado P.; Eilers G.; Nötzold J.; Mährlein S.; Zbarsky V.; Freimuth F.; Mokrousov Y.; Blügel S.; Wolf M.; Radu I.; Oppeneer P. M.; Münzenberg M. Terahertz spin current pulses controlled by magnetic heterostructures. Nat. Nanotechnol. 2013, 8 (4), 256–260. 10.1038/nnano.2013.43. PubMed DOI

Zhou C.; Liu Y. P.; Wang Z.; Ma S. J.; Jia M. W.; Wu R. Q.; Zhou L.; Zhang W.; Liu M. K.; Wu Y. Z.; Qi J. Broadband Terahertz Generation via the Interface Inverse Rashba-Edelstein Effect. Phys. Rev. Lett. 2018, 121 (8), 08680110.1103/PhysRevLett.121.086801. PubMed DOI

Seifert T.; Jaiswal S.; Martens U.; Hannegan J.; Braun L.; Maldonado P.; Freimuth F.; Kronenberg A.; Henrizi J.; Radu I.; Beaurepaire E.; Mokrousov Y.; Oppeneer P. M.; Jourdan M.; Jakob G.; Turchinovich D.; Hayden L. M.; Wolf M.; Münzenberg M.; Kläui M.; Kampfrath T. Efficient metallic spintronic emitters of ultrabroadband terahertz radiation. Nat. Photonics 2016, 10 (7), 483–488. 10.1038/nphoton.2016.91. DOI

Rouzegar R.; Brandt L.; Nádvorník L.; Reiss D. A.; Chekhov A. L.; Gueckstock O.; In C.; Wolf M.; Seifert T. S.; Brouwer P. W.; Woltersdorf G.; Kampfrath T. Laser-induced terahertz spin transport in magnetic nanostructures arises from the same force as ultrafast demagnetization. Phys. Rev. B 2022, 106 (14), 14442710.1103/PhysRevB.106.144427. DOI

Seifert T. S.; Jaiswal S.; Barker J.; Weber S. T.; Razdolski I.; Cramer J.; Gueckstock O.; Maehrlein S. F.; Nadvornik L.; Watanabe S.; Ciccarelli C.; Melnikov A.; Jakob G.; Münzenberg M.; Goennenwein S. T. B.; Woltersdorf G.; Rethfeld B.; Brouwer P. W.; Wolf M.; Kläui M.; Kampfrath T. Femtosecond formation dynamics of the spin Seebeck effect revealed by terahertz spectroscopy. Nat. Commun. 2018, 9 (1), 2899.10.1038/s41467-018-05135-2. PubMed DOI PMC

Seifert T. S.; Tran N. M.; Gueckstock O.; Rouzegar S. M.; Nadvornik L.; Jaiswal S.; Jakob G.; Temnov V. V.; Münzenberg M.; Wolf M.; Kläui M.; Kampfrath T. Terahertz spectroscopy for all-optical spintronic characterization of the spin-Hall-effect metals Pt, W and Cu80Ir20. J. Phys. D: Appl. Phys. 2018, 51 (36), 36400310.1088/1361-6463/aad536. DOI

Gorchon J.; Mangin S.; Hehn M.; Malinowski G. Is terahertz emission a good probe of the spin current attenuation length?. Appl. Phys. Lett. 2022, 121 (1), 012402.10.1063/5.0097448. DOI

Wahada M. A.; Şaşıoğlu E.; Hoppe W.; Zhou X.; Deniz H.; Rouzegar R.; Kampfrath T.; Mertig I.; Parkin S. S. P.; Woltersdorf G. Atomic Scale Control of Spin Current Transmission at Interfaces. Nano Lett. 2022, 22 (9), 3539–3544. 10.1021/acs.nanolett.1c04358. PubMed DOI PMC

Schneider R.; Fix M.; Bensmann J.; Michaelis de Vasconcellos S.; Albrecht M.; Bratschitsch R. Spintronic GdFe/Pt THz emitters. Appl. Phys. Lett. 2019, 115 (15), 15240110.1063/1.5120249. DOI

Kholid F. N.; Hamara D.; Hamdan A. F. B.; Nava Antonio G.; Bowen R.; Petit D.; Cowburn R.; Pisarev R. V.; Bossini D.; Barker J.; Ciccarelli C. The importance of the interface for picosecond spin pumping in antiferromagnet-heavy metal heterostructures. Nat. Commun. 2023, 14 (1), 538.10.1038/s41467-023-36166-z. PubMed DOI PMC

Dang T. H.; Hawecker J.; Rongione E.; Baez Flores G.; To D. Q.; Rojas-Sanchez J. C.; Nong H.; Mangeney J.; Tignon J.; Godel F.; Collin S.; Seneor P.; Bibes M.; Fert A.; Anane M.; George J.-M.; Vila L.; Cosset-Cheneau M.; Dolfi D.; Lebrun R.; Bortolotti P.; Belashchenko K.; Dhillon S.; Jaffrès H. Ultrafast spin-currents and charge conversion at 3d-5d interfaces probed by time-domain terahertz spectroscopy. Applied Physics Reviews 2020, 7 (4), 041409.10.1063/5.0022369. DOI

Bauer G. E. W.; Saitoh E.; van Wees B. J. Spin caloritronics. Nat. Mater. 2012, 11 (5), 391–399. 10.1038/nmat3301. PubMed DOI

Manchon A.; Železný J.; Miron I. M.; Jungwirth T.; Sinova J.; Thiaville A.; Garello K.; Gambardella P. Current-induced spin-orbit torques in ferromagnetic and antiferromagnetic systems. Rev. Mod. Phys. 2019, 91 (3), 03500410.1103/RevModPhys.91.035004. DOI

Sinova J.; Valenzuela S. O.; Wunderlich J.; Back C. H.; Jungwirth T. Spin Hall effects. Rev. Mod. Phys. 2015, 87 (4), 1213–1260. 10.1103/RevModPhys.87.1213. DOI

Seifert T. S.; Cheng L.; Wei Z.; Kampfrath T.; Qi J. Spintronic sources of ultrashort terahertz electromagnetic pulses. Appl. Phys. Lett. 2022, 120 (18), 18040110.1063/5.0080357. DOI

Bierhance G.; Markou A.; Gueckstock O.; Rouzegar R.; Behovits Y.; Chekhov A. L.; Wolf M.; Seifert T. S.; Felser C.; Kampfrath T. Spin-voltage-driven efficient terahertz spin currents from the magnetic Weyl semimetals Co2MnGa and Co2MnAl. Appl. Phys. Lett. 2022, 120 (8), 08240110.1063/5.0080308. DOI

Yuasa S.; Djayaprawira D. D. Giant tunnel magnetoresistance in magnetic tunnel junctions with a crystalline MgO(0 0 1) barrier. J. Phys. D: Appl. Phys. 2007, 40 (21), R337.10.1088/0022-3727/40/21/R01. DOI

Apalkov D.; Dieny B.; Slaughter J. M. Magnetoresistive random access memory. Proceedings of the IEEE 2016, 104 (10), 1796–1830. 10.1109/JPROC.2016.2590142. DOI

Wang L.; Cheng H.; Li P.; Van Hees Y. L. W.; Liu Y.; Cao K.; Lavrijsen R.; Lin X.; Koopmans B.; Zhao W. Picosecond optospintronic tunnel junctions. Proc. Natl. Acad. Sci. U. S. A. 2022, 119 (24), e2204732119.10.1073/pnas.2204732119. DOI

Jin Z.; Li J.; Zhang W.; Guo C.; Wan C.; Han X.; Cheng Z.; Zhang C.; Balakin A. V.; Shkurinov A. P.; Peng Y.; Ma G.; Zhu Y.; Yao J.; Zhuang S. Magnetic Modulation of Terahertz Waves via Spin-Polarized Electron Tunneling Based on Magnetic Tunnel Junctions. Physical Review Applied 2020, 14 (1), 01403210.1103/PhysRevApplied.14.014032. DOI

Jechumtál J.; Rouzegar R.; Gueckstock O.; Denker C.; Hoppe W.; Remy Q.; Seifert T. S.; Kubaščík P.; Woltersdorf G.; Brouwer P. W.; Münzenberg M.; Kampfrath T.; Nádvorník L. Accessing Ultrafast Spin-Transport Dynamics in Copper Using Broadband Terahertz Spectroscopy. Phys. Rev. Lett. 2024, 132 (22), 22670310.1103/PhysRevLett.132.226703. PubMed DOI

Rouzegar R.; Chekhov A. L.; Behovits Y.; Serrano B. R.; Syskaki M. A.; Lambert C. H.; Engel D.; Martens U.; Münzenberg M.; Wolf M.; Jakob G.; Kläui M.; Seifert T. S.; Kampfrath T. Broadband Spintronic Terahertz Source with Peak Electric Fields Exceeding 1.5 MV/cm. Physical Review Applied 2023, 19 (3), 03401810.1103/PhysRevApplied.19.034018. DOI

Chekhov A. L.; Behovits Y.; Heitz J. J. F.; Denker C.; Reiss D. A.; Wolf M.; Weinelt M.; Brouwer P. W.; Münzenberg M.; Kampfrath T. Ultrafast Demagnetization of Iron Induced by Optical versus Terahertz Pulses. Physical Review X 2021, 11 (4), 04105510.1103/PhysRevX.11.041055. DOI

Naylor D. A.; Tahic M. K. Apodizing functions for Fourier transform spectroscopy. J. Opt. Soc. Am. A 2007, 24 (11), 3644–3648. 10.1364/JOSAA.24.003644. PubMed DOI

Mather P. G.; Read J. C.; Buhrman R. A. Disorder, defects, and band gaps in ultrathin (001) MgO tunnel barrier layers. Phys. Rev. B 2006, 73 (20), 20541210.1103/PhysRevB.73.205412. DOI

Cha J. J.; Read J. C.; Buhrman R. A.; Muller D. A. Spatially resolved electron energy-loss spectroscopy of electron-beam grown and sputtered CoFeB/MgO/CoFeB magnetic tunnel junctions. Appl. Phys. Lett. 2007, 91 (6), 06251610.1063/1.2769753. DOI

Velev J. P.; Belashchenko K. D.; Jaswal S. S.; Tsymbal E. Y. Effect of oxygen vacancies on spin-dependent tunneling in Fe/MgO/Fe magnetic tunnel junctions. Appl. Phys. Lett. 2007, 90 (7), 07250210.1063/1.2643027. DOI

Miao G. X.; Park Y. J.; Moodera J. S.; Seibt M.; Eilers G.; Münzenberg M. Disturbance of Tunneling Coherence by Oxygen Vacancy in Epitaxial $\mathrm{Fe}/\mathrm{MgO}/\mathrm{Fe}$ Magnetic Tunnel Junctions. Phys. Rev. Lett. 2008, 100 (24), 24680310.1103/PhysRevLett.100.246803. PubMed DOI

Ke Y.; Xia K.; Guo H. Oxygen-Vacancy-Induced Diffusive Scattering in $\mathrm{Fe}/\mathrm{MgO}/\mathrm{Fe}$ Magnetic Tunnel Junctions. Phys. Rev. Lett. 2010, 105 (23), 23680110.1103/PhysRevLett.105.236801. PubMed DOI

Tsymbal E. Y.; Pettifor D. G. Local impurity-assisted conductance in magnetic tunnel junctions. Phys. Rev. B 2001, 64 (21), 21240110.1103/PhysRevB.64.212401. DOI

König T.; Simon G. H.; Rust H. P.; Heyde M. Work Function Measurements of Thin Oxide Films on Metals—MgO on Ag(001). J. Phys. Chem. C 2009, 113 (26), 11301–11305. 10.1021/jp901226q. DOI

Teixeira J. M.; Ventura J.; Carpinteiro F.; Araujo J. P.; Sousa J. B.; Wisniowski P.; Freitas P. P. The effect of pinhole formation/growth on the tunnel magnetoresistance of MgO-based magnetic tunnel junctions. J. Appl. Phys. 2009, 106 (7), 07370710.1063/1.3236512. DOI

König T.; Simon G. H.; Rust H. P.; Pacchioni G.; Heyde M.; Freund H. J. Measuring the Charge State of Point Defects on MgO/Ag(001). J. Am. Chem. Soc. 2009, 131 (48), 17544–17545. 10.1021/ja908049n. PubMed DOI

Mathon J.; Umerski A. Theory of tunneling magnetoresistance of an epitaxial Fe/MgO/Fe(001) junction. Phys. Rev. B 2001, 63 (22), 22040310.1103/PhysRevB.63.220403. DOI

Butler W. H.; Zhang X. G.; Schulthess T. C.; MacLaren J. M. Spin-dependent tunneling conductance of $\mathrm{Fe}|\mathrm{MgO}|\mathrm{Fe}$ sandwiches. Phys. Rev. B 2001, 63 (5), 05441610.1103/PhysRevB.63.054416. DOI

Butler W. H. Tunneling magnetoresistance from a symmetry filtering effect. Sci. Technol. Adv. Mater. 2008, 9 (1), 01410610.1088/1468-6996/9/1/014106. PubMed DOI PMC

Velev J. P.; Zhuravlev M. Y.; Belashchenko K. D.; Jaswal S. S.; Tsymbal E. Y.; Katayama T.; Yuasa S. Defect-Mediated Properties of Magnetic Tunnel Junctions. IEEE Trans. Magn. 2007, 43 (6), 2770–2775. 10.1109/TMAG.2007.893311. DOI

Gadzuk J. W. Resonance Tunneling Through Impurity States in Metal-Insulator-Metal Junctions. J. Appl. Phys. 1970, 41 (1), 286–291. 10.1063/1.1658335. DOI

Teixeira J. M.; Ventura J.; Araujo J. P.; Sousa J. B.; Wisniowski P.; Cardoso S.; Freitas P. P. Resonant Tunneling through Electronic Trapping States in Thin MgO Magnetic Junctions. Phys. Rev. Lett. 2011, 106 (19), 196601.10.1103/PhysRevLett.106.196601. PubMed DOI

Landsman A. S.; Weger M.; Maurer J.; Boge R.; Ludwig A.; Heuser S.; Cirelli C.; Gallmann L.; Keller U. Ultrafast resolution of tunneling delay time. Optica 2014, 1 (5), 343–349. 10.1364/OPTICA.1.000343. DOI

Mathon J.; Umerski A. Theory of resonant tunneling in an epitaxialFe/Au/MgO/Au/Fe(001)junction. Phys. Rev. B 2005, 71 (22), 220402.10.1103/PhysRevB.71.220402. DOI

Yuasa S.; Nagahama T.; Suzuki Y. Spin-Polarized Resonant Tunneling in Magnetic Tunnel Junctions. Science 2002, 297 (5579), 234–237. 10.1126/science.1071300. PubMed DOI

Lu Z.-Y.; Zhang X. G.; Pantelides S. T. Spin-Dependent Resonant Tunneling through Quantum-Well States in Magnetic Metallic Thin Films. Phys. Rev. Lett. 2005, 94 (20), 207210.10.1103/PhysRevLett.94.207210. PubMed DOI

Glazov M. M.; Alekseev P. S.; Odnoblyudov M. A.; Chistyakov V. M.; Tarasenko S. A.; Yassievich I. N. Spin-dependent resonant tunneling in symmetrical double-barrier structures. Phys. Rev. B 2005, 71 (15), 15531310.1103/PhysRevB.71.155313. DOI

Xu Y.; Ephron D.; Beasley M. R. Directed inelastic hopping of electrons through metal-insulator-metal tunnel junctions. Phys. Rev. B 1995, 52 (4), 2843–2859. 10.1103/PhysRevB.52.2843. PubMed DOI

Yuasa S.; Nagahama T.; Fukushima A.; Suzuki Y.; Ando K. Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions. Nat. Mater. 2004, 3 (12), 868–871. 10.1038/nmat1257. PubMed DOI

Mukherjee S. S.; Bai F.; MacMahon D.; Lee C.-L.; Gupta S. K.; Kurinec S. K. Crystallization and grain growth behavior of CoFeB and MgO layers in multilayer magnetic tunnel junctions. J. Appl. Phys. 2009, 106 (3), 03390610.1063/1.3176501. DOI

Choi Y. S.; Tsunekawa K.; Nagamine Y.; Djayaprawira D. Transmission electron microscopy study on the polycrystalline CoFeB/MgO/CoFeB based magnetic tunnel junction showing a high tunneling magnetoresistance, predicted in single crystal magnetic tunnel junction. J. Appl. Phys. 2007, 101 (1), 013907.10.1063/1.2407270. DOI

Papaioannou E. T.; Beigang R. THz spintronic emitters: a review on achievements and future challenges. Nanophotonics 2021, 10 (4), 1243–1257. 10.1515/nanoph-2020-0563. DOI

Feng Z.; Qiu H.; Wang D.; Zhang C.; Sun S.; Jin B.; Tan W. Spintronic terahertz emitter. J. Appl. Phys. 2021, 129 (1), 010901.10.1063/5.0037937. DOI

Cheng L.; Li Z.; Zhao D.; Chia E. E. M. Studying spin–charge conversion using terahertz pulses. APL Materials 2021, 9 (7), 070902.10.1063/5.0051217. DOI

Bull C.; Hewett S. M.; Ji R.; Lin C.-H.; Thomson T.; Graham D. M.; Nutter P. W. Spintronic terahertz emitters: Status and prospects from a materials perspective. APL Materials 2021, 9 (9), 090701.10.1063/5.0057511. DOI

Wu W.; Yaw Ameyaw C.; Doty M. F.; Jungfleisch M. B. Principles of spintronic THz emitters. J. Appl. Phys. 2021, 130 (9), 09110110.1063/5.0057536. DOI

Krewer K. L.; Zhang W.; Arabski J.; Schmerber G.; Beaurepaire E.; Bonn M.; Turchinovich D. Thickness-dependent electron momentum relaxation times in iron films. Appl. Phys. Lett. 2020, 116 (10), 102406.10.1063/1.5142479. DOI

Nádvorník L.; Borchert M.; Brandt L.; Schlitz R.; de Mare K. A.; Výborný K.; Mertig I.; Jakob G.; Kläui M.; Goennenwein S. T. B.; Wolf M.; Woltersdorf G.; Kampfrath T. Broadband Terahertz Probes of Anisotropic Magnetoresistance Disentangle Extrinsic and Intrinsic Contributions. Physical Review X 2021, 11 (2), 02103010.1103/PhysRevX.11.021030. DOI

Melnikov A.; Brandt L.; Liebing N.; Ribow M.; Mertig I.; Woltersdorf G. Ultrafast spin transport and control of spin current pulse shape in metallic multilayers. Phys. Rev. B 2022, 106 (10), 104417.10.1103/PhysRevB.106.104417. DOI

Lee K.; Lee D.-K.; Yang D.; Mishra R.; Kim D.-J.; Liu S.; Xiong Q.; Kim S. K.; Lee K.-J.; Yang H. Superluminal-like magnon propagation in antiferromagnetic NiO at nanoscale distances. Nat. Nanotechnol. 2021, 16 (12), 1337–1341. 10.1038/s41565-021-00983-4. PubMed DOI

Sasaki Y.; Li G.; Moriyama T.; Ono T.; Mikhaylovskiy R. V.; Kimel A. V.; Mizukami S. Laser stimulated THz emission from Pt/CoO/FeCoB. Appl. Phys. Lett. 2020, 117 (19), 192403.10.1063/5.0020020. DOI

Gueckstock O.; Seeger R. L.; Seifert T. S.; Auffret S.; Gambarelli S.; Kirchhof J. N.; Bolotin K. I.; Baltz V.; Kampfrath T.; Nádvorník L. Impact of gigahertz and terahertz transport regimes on spin propagation and conversion in the antiferromagnet IrMn. Appl. Phys. Lett. 2022, 120 (6), 062408.10.1063/5.0077868. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...