Computation of soliton structure and analysis of chaotic behaviour in quantum deformed Sinh-Gordon model
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
38905243
PubMed Central
PMC11192324
DOI
10.1371/journal.pone.0304424
PII: PONE-D-24-11642
Knihovny.cz E-zdroje
- MeSH
- algoritmy MeSH
- kvantová teorie * MeSH
- nelineární dynamika * MeSH
- počítačová simulace MeSH
- teoretické modely MeSH
- Publikační typ
- časopisecké články MeSH
Soliton dynamics and nonlinear phenomena in quantum deformation has been investigated through conformal time differential generalized form of q deformed Sinh-Gordon equation. The underlying equation has recently undergone substantial amount of research. In Phase 1, we employed modified auxiliary and new direct extended algebraic methods. Trigonometric, hyperbolic, exponential and rational solutions are successfully extracted using these techniques, coupled with the best possible constraint requirements implemented on parameters to ensure the existence of solutions. The findings, then, are represented by 2D, 3D and contour plots to highlight the various solitons' propagation patterns such as kink-bright, bright, dark, bright-dark, kink, and kink-peakon solitons and solitary wave solutions. It is worth emphasizing that kink dark, dark peakon, dark and dark bright solitons have not been found earlier in literature. In phase 2, the underlying model is examined under various chaos detecting tools for example lyapunov exponents, multistability and time series analysis and bifurcation diagram. Chaotic behavior is investigated using various initial condition and novel results are obtained.
College of Humanities and Sciences Ajman University Ajman UAE
Department of Computer Science and Mathematics Lebanese American University Byblos Lebanon
Department of Mathematics Forman Christian College A Chartered University FCCU Lahore Pakistan
Department of Mathematics Namal University Mianwali Pakistan
Department of Mathematics University of the Punjab Lahore Pakistan
IT4Innovations VSB Technical University of Ostrava Poruba Ostrava Czech Republic
Zobrazit více v PubMed
Vilasi Gravitational waves as exact solutions of Einstein Field Euations, J. Phys. Conf. 2007; 87:012017. doi: 10.1088/1742-6596/87/1/012017 DOI
Odintsov SD, Oikonomou VK, Myrzakulov R. Spectrum of Primordial Gravitational Waves in Modified Gravities: A Short Overview, Symmetry 2022;14:729. doi: 10.3390/sym14040729 DOI
Goswami A, Singh J, Kumar D, Gupta S, Sushila. An efficient analytical technique for fractional partial differential equations occurring in ion acoustic waves in plasma, J. Ocean Eng. Sci. 2019;4(2):85–99. doi: 10.1016/j.joes.2019.01.003 DOI
El-Shiekh R.M, Gaballah M. Solitary wave solutions for the variable-coefficient coupled nonlinear Schrödinger equations and Davey–Stewartson system using modified sine-Gordon equation method, J. Ocean Eng. Sci. 2020;5(2):180–185. doi: 10.1016/j.joes.2019.10.003 DOI
Islam T, Akbar A, Rezazadeh H, Bekir A. New-fashioned solitons of coupled nonlinear Maccari systems describing the motion of solitary waves in fluid flow, J. Ocean Eng. Sci. 2022. doi: 10.1016/j.joes.2022.03.003 DOI
Cai M, Li D. An integro-differential equation for surface ocean waves with finite depth, Nonlinear Analysis: Theory, Nonlinear Anal. 2011; 74(13): 4581–4588. doi: 10.1016/j.na.2011.04.029 DOI
Jamal T, Jhangeer A, Hussain M.Z. Propagation of velocity profile of unsteady magnetohydrodynamics flow between two orthogonal moving porous discs, Eur. Phys. J. Plus. 2023;138(403):1–10.
Nguyen LTK. Wronskian formulation and ansatz method for bad Boussinesq equation, Vietnam J. Math. 2016;44:449–462.
Hirota R. Direct methods in soliton theory, Soli. 1980;44:157–176. doi: 10.1007/978-3-642-81448-8_5 DOI
Raza N, Seadawy AR, Kaplan M, Butt AR. Symbolic computation and sensitivity analysis of nonlinear Kudryashov’s dynamical equation with applications, Phys. Scr. 2021;96:105216.
Zainab I, Akram G. Effect of derivative on time fractional Jaulent-Miodek system under modified auxiliary equation method and exp(−g(Ω))-expansion method, Chaos Solit. Fract. 2023;168:113147.
Hashemi MS, Mirzazadeh M. Optical solitons of the perturbed nonlinear Schrödinger equation using Lie symmetry method, Optik. 2023;281:170816. doi: 10.1016/j.ijleo.2023.170816 DOI
Kilbas AA, Srivastava HM, Trujillo JJ. Theory and applications of fractional differential equations, elsevier. 2006;204.
Durur H, IIhan E, Bulut H. Novel complex wave solutions of the (2+1)-dimensional hyperbolic nonlinear Schrödinger equation, Fractal. Fract. 2020;4(3). doi: 10.3390/fractalfract4030041 DOI
Almusawa H, Ali KK, Wazwaz AM, Mehanna MS, Baleanu D, Osman MS. Protracted study on a real physical phenomenon generated by media inhomogeneities, Resu. Phys. 2021;313:
Ali KK, Mehanna MS. Traveling wave solutions and numerical solutions of Gilson-Pickering equation, Resu. Phys. 2021;28:104596.
Zafar A, Ali KK, Raheel M, Jafar N, Nisar KS. Soliton solutions to the DNA Peyrard–Bishop equation with beta-derivative via three distinctive approaches. Eur. Phys. J. Plus. 2020;135(9):726. doi: 10.1140/epjp/s13360-020-00751-8 DOI
Osman MS, Ali KK. Optical soliton solutions of perturbing time-fractional nonlinear Schrödinger equations. Optik. 2020;209:164589. doi: 10.1016/j.ijleo.2020.164589 DOI
Osman MS, Zafar A, Ali KK, Razzaq W. Novel optical solitons to the perturbed Gerdjikov–Ivanov equation with truncated M-fractional conformable derivative. Optik. 2020;222:165418. doi: 10.1016/j.ijleo.2020.165418 DOI
Raslan KR, EL-Danaf TS, Ali KK. Exact solution of space-time fractional coupled EW and coupled MEW equations using modified Kudryashov method, Commun. Theor. Phys. 2017;68(1):49–56. doi: 10.1088/0253-6102/68/1/49 DOI
Kac VG, Pokman C. Quantum calculus. In: Universitext. Springer-Verlag; 2002.
Agarwal RP. Certain fractional q-integrals and q-derivatives. In: Mathematical Proceedings of the Cambridge Philosophical Society, Cambri. Uni. Press. 1969;66.
SI Brochure: The International System of Units (SI) (PDF). (9th ed.). International Bureau of Weights and Measures 2019;131.
Victor K, Pokman CQ. calculus, Universitext, Springer-Verlag 2002; ISBN 0-387-95341-8.
Butt R. I, Abdeljawad T, Alqudah MA, Rehman M. Ulam stability of caputo q-fractional delay difference equation: q-fractional gronwall inequality approach, J. Inequal. Appl. 2019;2019(1):1–13. doi: 10.1186/s13660-019-2257-6 PubMed DOI
Jleli M, Mursaleen M, Samet B. Q-integral equations of fractional orders, Elect. J. Differ. Equ. 2016;2016(17):1–14.
Abdeljawad T, Baleanu D. Caputo q-fractional initial value problems and a q-analogue mittag–leffler function, Commun. Nonlinear. Sci. Numer. Simul. 2011;16(12):4682–4688. doi: 10.1016/j.cnsns.2011.01.026 DOI
Eleuch H. Some analytical wave solutions for the generalized q-deformed Sinh-Gordon equation: DOI
Arshed S, Biswas A, Mallawi F, Belic MR. Optical solitons with complex Ginzburg-Landau equation having three nonlinear forms, Phys. Lette. A. 2019;383(36):126026. doi: 10.1016/j.physleta.2019.126026 DOI
Bagheri M, Khani A. Analytical method for solving the fractional order generalized KdV equation by a beta fractional derivative, Adv. Math. Phys. 2020; 2022:1–18. doi: 10.1155/2020/8819183 DOI
Abdalla MS, Eleuch H, Barakat T. Exact analytical solutions of the wave function for some q-deformed potentials, Rep. Math. Phys. 2013;71:217–229. doi: 10.1016/S0034-4877(13)60031-2 DOI
Ali KK, Abdel-Aty AH, An extensive analytical and numerical study of the generalized q-deformed Sinh-Gordon equation, J. Ocean. Eng. Sci. 2022;
Jamal T, Jhangeer A, Hussain MZ. Analysis of nonlinear dynamics of Novikov–Veselov equation using solitonic solutions, bifurcation, periodic and quasi-periodic solutions, and poincaré section, Eur. Phys. J. Plus. 2023;138(12):1087. doi: 10.1140/epjp/s13360-023-04689-5 DOI
Rafiq MH, Raza N, Jhangeer A. Dynamic study of bifurcation, chaotic behavior and multi-soliton profiles for the system of shallow water wave equations with their stability, Chaos. Soli. Fract. 2023;171:113436. doi: 10.1016/j.chaos.2023.113436 DOI
Li Z, Huang C. Bifurcation, phase portrait, chaotic pattern and optical soliton solutions of the conformable Fokas–Lenells model in optical fibers, Chaos. Soli. Fract. 2023;169:113237. doi: 10.1016/j.chaos.2023.113237 DOI
Zhang X, Min F, Dou Y, Xu Y. Bifurcation analysis of a modified FitzHugh-Nagumo neuron with electric field, Chaos. Soli. Fract. 2023;170: 113415. doi: 10.1016/j.chaos.2023.113415 DOI
Jamal T, Jhangeer A, Hussain MZ. An anatomization of pulse solitons of nerve impulse model via phase portraits, chaos and sensitivity analysis, Chine. J. Phys. 2024; 87:496–509. doi: 10.1016/j.cjph.2023.12.005 DOI
Liu C, Li Z. The dynamical behavior analysis of the fractional perturbed Gerdjikov–Ivanov equation, Resu. Phys. 2024;59:107537.
Gu M, Peng C, Li Z. Traveling wave solution of (3+1)-dimensional negative-order KdV-Calogero-Bogoyavlenskii-Schiff equation, AIMS. Math. 2024;9(3): 6699–6708. doi: 10.3934/math.2024326 DOI
Özer AB, Akin E. Tools for detecting chaos, SA. Fen. Bilimleri. Enstits. Dergisi. 2005;9:60–64.
Rezazadeh H. New solitons solutions of the complex Ginzburg-landau equation with Kerr law nonlinearity, Optik. Inter. J. Light. Elect. Opt. 2018;167:218–227. doi: 10.1016/j.ijleo.2018.04.026 DOI
Jhangeer A, Seadawy AR, Ali F, Ahmed A. New complex waves of perturbed Schrödinger equation with Kerr law nonlinearity and Kundu-Mukherjee-Naskar equation, Resu. Phys. 2020;16:102816.