Including marker x environment interactions improves genomic prediction in red clover (Trifolium pratense L.)

. 2024 ; 15 () : 1407609. [epub] 20240610

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38916032

Genomic prediction has mostly been used in single environment contexts, largely ignoring genotype x environment interaction, which greatly affects the performance of plants. However, in the last decade, prediction models including marker x environment (MxE) interaction have been developed. We evaluated the potential of genomic prediction in red clover (Trifolium pratense L.) using field trial data from five European locations, obtained in the Horizon 2020 EUCLEG project. Three models were compared: (1) single environment (SingleEnv), (2) across environment (AcrossEnv), (3) marker x environment interaction (MxE). Annual dry matter yield (DMY) gave the highest predictive ability (PA). Joint analyses of DMY from years 1 and 2 from each location varied from 0.87 in Britain and Switzerland in year 1, to 0.40 in Serbia in year 2. Overall, crude protein (CP) was predicted poorly. PAs for date of flowering (DOF), however ranged from 0.87 to 0.67 for Britain and Switzerland, respectively. Across the three traits, the MxE model performed best and the AcrossEnv worst, demonstrating that including marker x environment effects can improve genomic prediction in red clover. Leaving out accessions from specific regions or from specific breeders' material in the cross validation tended to reduce PA, but the magnitude of reduction depended on trait, region and breeders' material, indicating that population structure contributed to the high PAs observed for DMY and DOF. Testing the genomic estimated breeding values on new phenotypic data from Sweden showed that DMY training data from Britain gave high PAs in both years (0.43-0.76), while DMY training data from Switzerland gave high PAs only for year 1 (0.70-0.87). The genomic predictions we report here underline the potential benefits of incorporating MxE interaction in multi-environment trials and could have perspectives for identifying markers with effects that are stable across environments, and markers with environment-specific effects.

Zobrazit více v PubMed

Annicchiarico P., Nazzicari N., Li X., Wei Y., Pecetti L., Brummer E. C. (2015). Accuracy of genomic selection for alfalfa biomass yield in different reference populations. BMC Genomics 16, 1–13. doi: 10.1186/s12864-015-2212-y PubMed DOI PMC

Annicchiarico P., Nazzicari N., Wei Y., Pecetti L., Brummer E. C. (2017). Genotyping-by-sequencing and its exploitation for forage and cool-season grain legume breeding. Front. Plant Sci. 8. doi: 10.3389/fpls.2017.00679 PubMed DOI PMC

Arojju S. K., Cao M., Zulfi Jahufer M. Z., Barrett B. A., Faville M. J. (2020). Genomic predictive ability for foliar nutritive traits in perennial ryegrass. G3.: Genes|Genomes|Genetics. 10, 695–708. doi: 10.1534/g3.119.400880 PubMed DOI PMC

Arojju S. K., Conaghan P., Barth S., Milbourne D., Casler M. D., Hodkinson T. R., et al. . (2018). Genomic prediction of crown rust resistance in Lolium perenne. BMC Genet. 19, 35. doi: 10.1186/s12863-018-0613-z PubMed DOI PMC

Baird N. A., Etter P. D., Atwood T. S., Currey M. C., Shiver A. L., Lewis Z. A., et al. . (2008). Rapid SNP discovery and genetic mapping using sequenced RAD markers. PloS One 3, e3376. doi: 10.1371/journal.pone.0003376 PubMed DOI PMC

Bandeira E Sousa M., Cuevas J., De Oliveira Couto E. G., Pérez-Rodríguez P., Jarquín D., Fritsche-Neto R., et al. . (2017). Genomic-enabled prediction in maize using kernel models with genotype × Environment interaction. G3.: Genes|Genomes|Genetics. 7, 1995–2014. doi: 10.1534/g3.117.042341 PubMed DOI PMC

Barre P., Asp T., Byrne S., Casler M., Faville M., Rognli O. A., et al. . (2022). Genomic prediction of complex traits in forage plants species: perennial grasses case. Methods Mol. Biol. 2467, 521–541. doi: 10.1007/978-1-0716-2205-6_19 PubMed DOI

Bassi F. M., Bentley A. R., Charmet G., Ortiz R., Crossa J. (2016). Breeding schemes for the implementation of genomic selection in wheat (Triticum spp.). Plant Sci. (Oxford). 242, 23–36. doi: 10.1016/j.plantsci.2015.08.021 PubMed DOI

Burgueño J., De Los Campos G., Weigel K., Crossa J. (2012). Genomic Prediction of Breeding Values when Modeling Genotype × Environment Interaction using Pedigree and Dense Molecular Markers. Crop Sci. 52, 707–719. doi: 10.2135/cropsci2011.06.0299 DOI

Byrne S., Czaban A., Studer B., Panitz F., Bendixen C., Asp T. (2013). Genome wide allele frequency fingerprints (GWAFFs) of populations via genotyping by sequencing. PloS One 8, e57438. doi: 10.1371/journal.pone.0057438 PubMed DOI PMC

Byrne S. L., Conaghan P., Barth S., Arojju S. K., Casler M., Michel T., et al. . (2017). Using variable importance measures to identify a small set of SNPs to predict heading date in perennial ryegrass. Sci. Rep. 7, 3566. doi: 10.1038/s41598-017-03232-8 PubMed DOI PMC

Campbell M. T., Hu H., Yeats T. H., Brzozowski L. J., Caffe-Treml M., Gutiérrez L., et al. . (2021). Improving genomic prediction for seed quality traits in oat (Avena sativa L.) using trait-specific relationship matrices. Front. Genet. 12. doi: 10.3389/fgene.2021.643733 PubMed DOI PMC

Cericola F., Lenk I., Fè D., Byrne S., Jensen C. S., Pedersen M. G., et al. . (2018). Optimized use of low-depth genotyping-by-sequencing for genomic prediction among multi-parental family pools and single plants in perennial ryegrass (Lolium perenne L.). Front. Plant Sci. 9. doi: 10.3389/fpls.2018.00369 PubMed DOI PMC

Crossa J., De Los Campos G., Maccaferri M., Tuberosa R., Burgueño J., Pérez-Rodríguez P. (2016). Extending the marker × Environment interaction model for genomic-enabled prediction and genome-wide association analysis in durum wheat. Crop Sci. 56, 2193–2209. doi: 10.2135/cropsci2015.04.0260 DOI

Cuevas J., Crossa J., Soberanis V., Perez-Elizalde S., Perez-Rodriguez P., de los Campos G., et al. . (2016). Genomic prediction of Genotype x Environment interaction Kernel regression model. Plant Genome 9. doi: 10.3835/plantgenome2016.03.0024 PubMed DOI

Cui Y., Li R., Li G., Zhang F., Zhu T., Zhang Q., et al. . (2020). Hybrid breeding of rice via genomic selection. Plant Biotechnol. J. 18, 57–67. doi: 10.1111/pbi.13170 PubMed DOI PMC

Elshire R. J., Glaubitz J. C., Sun Q., Poland J. A., Kawamoto K., Buckler E. S., et al. . (2011). A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PloS One 6, e19379. doi: 10.1371/journal.pone.0019379 PubMed DOI PMC

Ergon Å., Milvang Ø.W., Skøt L., Ruttink T. (2022). Identification of loci controlling timing of stem elongation in red clover using genotyping by sequencing of pooled phenotypic extremes. Mol. Genet. Genomics 297, 1587–1600. doi: 10.1007/s00438-022-01942-x PubMed DOI PMC

Ergon Å., Skøt L., Sæther V. E., Rognli O. A. (2019). Allele frequency changes provide evidence for selection and identification of candidate loci for survival in red clover (Trifolium pratense L.). Front. Plant Sci. 10. doi: 10.3389/fpls.2019.00718 PubMed DOI PMC

Faville M. J., Cao M., Schmidt J., Ryan D. L., Ganesh S., Jahufer M. Z. Z., et al. . (2020). Divergent genomic selection for herbage accumulation and days-to-heading in perennial ryegrass. Agronomy 10, 340. doi: 10.3390/agronomy10030340 DOI

Faville M. J., Ganesh S., Cao M., Jahufer M. Z. Z., Bilton T. P., Easton H. S., et al. . (2018). Predictive ability of genomic selection models in a multi-population perennial ryegrass training set using genotyping-by-sequencing. Theor. Appl. Genet. 131, 703–720. doi: 10.1007/s00122-017-3030-1 PubMed DOI PMC

Fè D., Ashraf B. H., Pedersen M. G., Janss L., Byrne S., Roulund N., et al. . (2016). Accuracy of genomic prediction in a commercial perennial ryegrass breeding program. Plant Genome 9, 3. doi: 10.3835/plantgenome2015.11.0110 PubMed DOI

Fè D., Cericola F., Byrne S., Lenk I., Ashraf B., Pedersen M., et al. . (2015). Genomic dissection and prediction of heading date in perennial ryegrass. BMC Genomics 16, 1–15. doi: 10.1186/s12864-015-2163-3 PubMed DOI PMC

Forster J. W., Hand M. L., Cogan N. O. I., Hayes B. J., Spangenberg G. C., Smith K. F. (2014). Resources and strategies for implementation of genomic selection in breeding of forage species. Crop Pasture Sci. 65, 1238–1247. doi: 10.1071/CP13361 DOI

Frame J., Charlton J. F. L., Laidlaw A. S. (1998). Temperate forage Legumes (Wallingford: CAB International; ), 327, ISBN: ISBN 0–85199-2145.

Frey L. A., Vleugels T., Ruttink T., Schubiger F. X., Pégard M., Skøt L., et al. . (2022). Phenotypic variation and quantitative trait loci for resistance to southern anthracnose and clover rot in red clover. Theor. Appl. Genet. 135, 4337–4349. doi: 10.1007/s00122-022-04223-8 PubMed DOI PMC

Griffiths A., Ehoche G., Arojju S., Larking A., Jauregui R., Cousins G., et al. . (2022). Developing genomic selection for dry matter yield in white clover. J. New Z. Grasslands. 83, 83–90. doi: 10.33584/jnzg.2021.83.3502 DOI

Grinberg N. F., Lovatt A., Hegarty M., Lovatt A., Skøt K. P., Kelly R., et al. . (2016). Implementation of genomic prediction in Lolium perenne (L.) breeding populations. Front. Plant Sci. 7. doi: 10.3389/fpls.2016.00133 PubMed DOI PMC

Guo Z., Tucker D. M., Basten C. J., Gandhi H., Ersoz E., Guo B., et al. . (2014). The impact of population structure on genomic prediction in stratified populations. Theor. Appl. Genet. 127, 749–762. doi: 10.1007/s00122-013-2255-x PubMed DOI

Hayes B. J., Cogan N. O. I., Pembleton L. W., Goddard M. E., Wang J., Spangenberg G. C., et al. . (2013. a). Prospects for genomic selection in forage plant species. Plant Breed. 132, 133–143. doi: 10.1111/pbr.12037 DOI

Hayes B. J., Lewin H. A., Goddard M. E. (2013. b). The future of livestock breeding: genomic selection for efficiency, reduced emissions intensity, and adaptation. Trends Genet. 29, 206–214. doi: 10.1016/j.tig.2012.11.009 PubMed DOI

Heslot N., Akdemir D., Sorrells M., Jannink J.-L. (2014). Integrating environmental covariates and crop modeling into the genomic selection framework to predict genotype by environment interactions. Theor. Appl. Genet. 127, 463–480. doi: 10.1007/s00122-013-2231-5 PubMed DOI

Jarquín D., Crossa J., Lacaze X., Cheyron P., Daucourt J., Lorgeou J., et al. . (2014). A reaction norm model for genomic selection using high-dimensional genomic and environmental data. Theor. Appl. Genet. 127, 595–607. doi: 10.1007/s00122-013-2243-1 PubMed DOI PMC

Jia C., Zhao F., Wang X., Han J., Zhao H., Liu G., et al. . (2018). Genomic prediction for 25 agronomic and quality traits in alfalfa (Medicago sativa). Front. Plant Sci. 9. doi: 10.3389/fpls.2018.01220 PubMed DOI PMC

Juliana P., Singh R. P., Braun H.-J., Huerta-Espino J., Crespo-Herrera L., Govindan V., et al. . (2020). Genomic selection for grain yield in the CIMMYT wheat breeding program—Status and perspectives. Front. Plant Sci. 11. doi: 10.3389/fpls.2020.564183 PubMed DOI PMC

Keep T., Sampoux J. P., Blanco-Pastor J. L., Dehmer K. J., Hegarty M. J., Ledauphin T., et al. . (2020). High-throughput genome-wide genotyping to optimize the use of natural genetic resources in the grassland species perennial ryegrass (Lolium perenne l.). G3 10, 3347–3364. doi: 10.1534/g3.120.401491 PubMed DOI PMC

Lee M. R. F. (2014). Forage polyphenol oxidase and ruminant livestock nutrition. Front. Plant Sci. 5. doi: 10.3389/fpls.2014.00694 PubMed DOI PMC

Li X., Wei Y., Acharya A., Hansen J. L., Crawford J. L., Viands D. R., et al. . (2015). Genomic prediction of biomass yield in two selection cycles of a tetraploid alfalfa breeding population. Plant Genome 8, 90. doi: 10.3835/plantgenome2014.12.0090 PubMed DOI

Lin Z., Cogan N. O. I., Pembleton L. W., Spangenberg G. C., Forster J. W., Hayes B. J., et al. . (2016). Genetic gain and inbreeding from genomic selection in a simulated commercial breeding program for perennial ryegrass. Plant Genome 9, 46. doi: 10.3835/plantgenome2015.06.0046 PubMed DOI

Lin Z., Wang J., Cogan N. O. I., Pembleton L. W., Badenhorst P., Forster J. W., et al. . (2017). Optimizing resource allocation in a genomic breeding program for perennial ryegrass to balance genetic gain, cost, and inbreeding. Crop Sci. 57, 243–252. doi: 10.2135/cropsci2016.07.0577 DOI

Liu H., Zhou H., Wu Y., Li X., Zhao J., Zuo T., et al. . (2015). The impact of genetic relationship and linkage disequilibrium on genomic selection. PloS One 10, e0132379. doi: 10.1371/journal.pone.0132379 PubMed DOI PMC

Lopez-Cruz M., Crossa J., Bonnett D., Dreisigacker S., Poland J., Jannink J.-L., et al. . (2015). Increased prediction accuracy in wheat breeding trials using a marker × Environment interaction genomic selection model. G3.: Genes|Genomes|Genetics. 5, 569–582. doi: 10.1534/g3.114.016097 PubMed DOI PMC

Lüscher A., Mueller-Harvey I., Soussana J. F., Rees R. M., Peyraud J. L. (2014). Potential of legume-based grassland–livestock systems in Europe: a review. Grass. Forage. Sci. 69, 206–228. doi: 10.1111/gfs.12124 PubMed DOI PMC

McKenna P., Cannon N., Conway J., Dooley J. (2018). The use of red clover (Trifolium pratense) in soil fertility-building: A Review. Field Crops Res. 221, 38–49. doi: 10.1016/j.fcr.2018.02.006 DOI

Meuwissen T. H. E., Hayes B. J., Goddard M. E. (2001). Prediction of total genetic value using genome-wide dense marker maps. Genetics 157, 1819–1829. doi: 10.1093/genetics/157.4.1819 PubMed DOI PMC

Nay M. M., Grieder C., Frey L. A., Amdahl H., Radovic J., Jaluvka L., et al. . (2023). Multi-location trials and population-based genotyping reveal high diversity and adaptation to breeding environments in a large collection of red clover. Front. Plant Sci. 14. doi: 10.3389/fpls.2023.1128823 PubMed DOI PMC

Pégard M., Barre P., Delaunay S., Surault F., Karagić D., Milić D., et al. . (2023). Genome-wide genotyping data renew knowledge on genetic diversity of a worldwide alfalfa collection and give insights on genetic control of phenology traits. Front. Plant Sci. 14. doi: 10.3389/fpls.2023.1196134 PubMed DOI PMC

Pembleton L. W., Inch C., Baillie R. C., Drayton M. C., Thakur P., Ogaji Y. O., et al. . (2018). Exploitation of data from breeding programs supports rapid implementation of genomic selection for key agronomic traits in perennial ryegrass. Theor. Appl. Genet. 131, 1891–1902. doi: 10.1007/s00122-018-3121-7 PubMed DOI PMC

Pérez P., De Los Campos G. (2014). Genome-wide regression; prediction with the BGLR statistical package. Genetics 198, 483–495. doi: 10.1534/genetics.114.164442 PubMed DOI PMC

Puglisi D., Delbono S., Visioni A., Ozkan H., Kara İ., Casas A. M., et al. . (2021). Genomic prediction of grain yield in a barley MAGIC population modeling genotype per environment interaction. Front. Plant Sci. 12. doi: 10.3389/fpls.2021.664148 PubMed DOI PMC

R Core Team (2023). R: A Language and Environment for Statistical Computing (Vienna, Austria: R Foundation for Statistical Computing; ).

Sabag I., Bi Y., Peleg Z., Morota G. (2023). Multi-environment analysis enhances genomic prediction accuracy of agronomic traits in sesame. Front. Genet. 14. doi: 10.3389/fgene.2023.1108416 PubMed DOI PMC

Schefers J. M., Weigel K. A. (2012). Genomic selection in dairy cattle: Integration of DNA testing into breeding programs. Anim. Front. 2, 4–9. doi: 10.2527/af.2011-0032 DOI

Smith A., Cullis B. (2018). Plant breeding selection tools built on factor analytic mixed models for multi-environment trial data. Euphytica 214, 143. doi: 10.1007/s10681-018-2220-5 DOI

Smith A., Cullis B., Thompson R. (2001). Analyzing Variety by environment data using multiplicative mixed models and adjustments for spatial field trend. Biometrics 57, 1138–1147. doi: 10.1111/j.0006-341X.2001.01138.x PubMed DOI

Sukumaran S., Jarquin D., Crossa J., Reynolds M. (2018). Genomic-enabled prediction accuracies increased by modeling genotype × Environment interaction in durum wheat. Plant Genome 11, 170112. doi: 10.3835/plantgenome2017.12.0112 PubMed DOI

VanRaden P. M. (2008). Efficient models to compute genomic predictions. J. Dairy. Sci. 91, 4414–4423. doi: 10.3168/jds.2007-0980 PubMed DOI

Walsh B., Lynch M. (2018). Evolution and selection of quantitative traits Vol. 1 (Oxford, UK: Oxford University Press; ).

Werner C. R., Gaynor R. C., Gorjanc G., Hickey J. M., Kox T., Abbadi A., et al. . (2020). How population structure impacts genomic selection accuracy in cross-validation: Implications for practical breeding. Front. Plant Sci. 11. doi: 10.3389/fpls.2020.592977 PubMed DOI PMC

Wiggans G. R., Cole J. B., Hubbard S. M., Sonstegard T. S. (2017). Genomic selection in dairy cattle: the USDA experience. Annu. Rev. Anim. Biosci. 5, 309–327. doi: 10.1146/annurev-animal-021815-111422 PubMed DOI

Xu Y., Ma K., Zhao Y., Wang X., Zhou K., Yu G., et al. . (2021). Genomic selection: A breakthrough technology in rice breeding. Crop J. 9, 669–677. doi: 10.1016/j.cj.2021.03.008 DOI

Zanotto S., Ruttink T., Pégard M., Skøt L., Grieder C., Kölliker R., et al. . (2023). A genome-wide association study of freezing tolerance in red clover (Trifolium pratense L.) germplasm of European origin. Front. Plant Sci. 14. doi: 10.3389/fpls.2023.1189662 PubMed DOI PMC

Zhao Y., Gowda M., Liu W., Würschum T., Maurer H., Longin F., et al. . (2012). Accuracy of genomic selection in European maize elite breeding populations. Theor. Appl. Genet. 124, 769–776. doi: 10.1007/s00122-011-1745-y PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...