ABNOH-Linked Nucleotides and DNA for Bioconjugation and Cross-linking with Tryptophan-Containing Peptides and Proteins
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
20-00885X
Grantová Agentura České Republiky
CZ.02.01.01/00/22_008/0004575
Ministerstvo Školství, Mládeže a Tělovýchovy
LM2023042
Ministerstvo Školství, Mládeže a Tělovýchovy
CZ.02.1.01/0.0/0.0/18_046/0015974
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
38924659
DOI
10.1002/chem.202402151
Knihovny.cz E-zdroje
- Klíčová slova
- Bioconjugations, N-oxyl radicals, Nucleotides, Oligonucleotides, Peptides,
- MeSH
- DNA-dependentní DNA-polymerasy metabolismus chemie MeSH
- DNA * chemie MeSH
- nukleotidy * chemie MeSH
- peptidy * chemie MeSH
- proteiny chemie MeSH
- reagencia zkříženě vázaná chemie MeSH
- tryptofan * chemie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- DNA-dependentní DNA-polymerasy MeSH
- DNA * MeSH
- nukleotidy * MeSH
- peptidy * MeSH
- proteiny MeSH
- reagencia zkříženě vázaná MeSH
- tryptofan * MeSH
Reactive N-hydroxy-9-azabicyclo[3.3.1]nonane (ABNOH) linked 2'-deoxyuridine 5'-O-mono- and triphosphates were synthesized through a CuAAC reaction of ABNOH-PEG4-N3 with 5-ethynyl-dUMP or -dUTP. The modified triphosphate was used as substrate for enzymatic synthesis of modified DNA probes with KOD XL DNA polymerase. The keto-ABNO radical reacted with tryptophan (Trp) and Trp-containing peptides to form a stable tricyclic fused hexahydropyrrolo-indole conjugates. Similarly modified ABNOH-linked nucleotides reacted with Trp-containing peptides to form a stable conjugate in the presence but surprisingly even in the absence of NaNO2 (presumably through activation by O2). The reactive ABNOH-modified DNA probe was used for bioconjugations and crosslinking with Trp-containing peptides or proteins.
Zobrazit více v PubMed
R. Rohs, X. Jin, S. M. West, R. Joshi, B. Honig, R. S. Mann, Annu. Rev. Biochem. 2010, 79, 233–269.
S. A. Lambert, A. Jolma, L. F. Campitelli, P. K. Das, Y. Yin, M. Albu, X. Chen, J. Taipale, T. R. Hughes, M. T. Weirauch, Cell 2018, 172, 650–665.
T. S. Furey, Nat. Rev. Genet. 2012, 13, 840–852.
I. Dovgan, O. Koniev, S. Kolodych, A. Wagner, Bioconjug. Chem. 2019, 30, 2483–2501;
T. B. Nielsen, R. P. Thomsen, M. R. Mortensen, J. Kjems, P. F. Nielsen, T. E. Nielsen, A. L. B. Kodal, E. Cló, K. V. Gothelf, Angew. Chem. Int. Ed. 2019, 58, 9068–9072;
J. Balintová, M. Welter, A. Marx, Chem. Sci. 2018, 9, 7122–7125.
P. Shi, Y. Wang, Angew. Chem. Int. Ed. 2021, 60, 11580–11591.
C. M. Niemeyer, Angew. Chem. Int. Ed. 2010, 49, 1200–1216.
M. Winnacker, S. Breeger, R. Strasser, T. Carell, ChemBioChem 2009, 10, 109–118;
L. Lercher, J. F. McGouran, B. M. Kessler, C. J. Schofield, B. G. Davis, Angew. Chem. Int. Ed. 2013, 52, 10553–10558;
C. L. Norris, P. L. Meisenheimer, T. H. Koch, J. Am. Chem. Soc. 1996, 118, 5796–5803.
I. Ivancová, D.-L. Leone, M. Hocek, Curr. Opin. Chem. Biol. 2019, 52, 136–144;
N. Klöcker, F. P. Weissenboeck, A. Rentmeister, Chem. Soc. Rev. 2020, 49, 8749–8773;
K. Krell, D. Harijan, D. Ganz, L. Doll, H.-A. Wagenknecht, Bioconjug. Chem. 2020, 31, 990–1011;
D. Ganz, D. Harijan, H.-A. Wagenknecht, RSC Chem. Biol. 2020, 1, 86–97;
M. Jbara, J. Rodriguez, H. H. Dhanjee, A. Loas, S. L. Buchwald, B. L. Pentelute, Angew. Chem. Int. Ed. 2021, 60, 12109–12115;
J. Konč, L. Brown, D. R. Whiten, Y. Zuo, P. Ravn, D. Klenerman, G. J. L. Bernardes, Angew. Chem. Int. Ed. 2021, 60, 25905–25913.
P. M. E. Gramlich, S. Warncke, J. Gierlich, T. Carell, Angew. Chem. Int. Ed. 2008, 47, 3442–3444;
H. Busskamp, E. Batroff, A. Niederwieser, O. S. Abdel-Rahman, R. F. Winter, V. Wittmann, A. Marx, Chem. Commun. 2014, 50, 10827–10829;
U. Rieder, N. W. Luedtke, Angew. Chem. Int. Ed. 2014, 53, 9168–9172;
S. Arndt, H.-A. Wagenknecht, Angew. Chem. Int. Ed. Engl. 2014, 53, 14580–14582;
K. Wang, D. Wang, K. Ji, W. Chen, Y. Zheng, C. Dai, B. Wang, Org. Biomol. Chem. 2015, 13, 909–915;
X. Ren, A. H. El-Sagheer, T. Brown, Nucleic Acids Res. 2016, 44, e79;
U. Reisacher, D. Ploschik, F. Rönicke, G. B. Cserép, P. Kele, H.-A. Wagenknecht, Chem. Sci. 2019, 10, 4032–4037;
K. Krell, B. Pfeuffer, F. Rönicke, Z. S. Chinoy, C. Favre, F. Friscourt, H.-A. Wagenknecht, Chem. Eur. J. 2021, 27, 16093–16097;
A. Spampinato, E. Kužmová, R. Pohl, V. Sýkorová, M. Vrábel, T. Kraus, M. Hocek, Bioconjug. Chem. 2023, 34, 772–780;
B. Pfeuffer, P. Geng, H.-A. Wagenknecht, ChemBioChem 2024, 25, e202300739;
N. Seul, D. Lamade, P. Stoychev, M. Mijic, R. Michenfelder, L. Rieger, P. Geng, H.-A. Wagenknecht, Angew. Chem. Int. Ed. 2024, 63, e202403044.
J. Dadová, P. Orság, R. Pohl, M. Brázdová, M. Fojta, M. Hocek, Angew. Chem. Int. Ed. 2013, 52, 10515–10518.
K. Odaira, K. Yamada, S. Ishiyama, H. Okamura, F. Nagatsugi, Appl. Sci. 2020, 10, 7709.
Olszewska, R. Pohl, M. Brázdová, M. Fojta, M. Hocek, Bioconjug. Chem. 2016, 27, 2089–2094.
M. Brunderová, M. Krömer, M. Vlková, M. Hocek, Angew. Chem. Int. Ed. 2023, 62, e202213764.
D.-L. Leone, M. Hubálek, R. Pohl, V. Sýkorová, M. Hocek, Angew. Chem. Int. Ed. 2021, 60, 17383–17387.
D.-L. Leone, R. Pohl, M. Hubálek, M. Kadeřábková, M. Krömer, V. Sýkorová, M. Hocek, Chem. Eur. J 2022, 28, e202104208.
M. Fonvielle, N. Sakkas, L. Iannazzo, C. Le Fournis, D. Patin, D. Mengin-Lecreulx, A. El-Sagheer, E. Braud, S. Cardon, T. Brown, M. Arthur, M. Etheve-Quelquejeu, Angew. Chem. Int. Ed. 2016, 55, 13553–13557.
I. Ivancová, R. Pohl, M. Hubálek, M. Hocek, Angew. Chem. Int. Ed. 2019, 58, 13345–13348.
A.-D. Guo, K.-N. Yan, H. Hu, L. Zhai, T.-F. Hu, H. Su, Y. Chi, J. Zha, Y. Xu, D. Zhao, X. Lu, Y.-J. Xu, J. Zhang, M. Tan, X.-H. Chen, Nat. Chem. 2023, 15, 803–814.
P. Chauhan, R. V. M. Kumar, R. Molla, S. D. Mishra, S. Basa, V. Rai, Chem. Soc. Rev. 2024, 53, 380–449.
N. L. Kjaersgaard, T. B. Nielsen, K. V. Gothelf, ChemBioChem 2022, 23, e202200245;
N. H. Fischer, M. T. Oliveira, F. Diness, Biomater. Sci. 2023, 11, 719–748.
M. B. Hansen, F. Hubálek, T. Skrydstrup, T. Hoeg-Jensen, Chem. Eur. J. 2016, 22, 1572–1576;
K. Rahimidashaghoul, I. Klimánková, M. Hubálek, M. Korecký, M. Chvojka, D. Pokorný, V. Matoušek, L. Fojtík, D. Kavan, Z. Kukačka, P. Novák, P. Beier, Chem. Eur. J. 2019, 25, 15779–15785.
S. Sato, H. Nakamura, Molecules 2019, 24, 3980.
Y. Seki, T. Ishiyama, D. Sasaki, J. Abe, Y. Sohma, K. Oisaki, M. Kanai, J. Am. Chem. Soc. 2016, 138, 10798–10801.
K. Maruyama, K. J. Malawska, N. Konoue, K. Oisaki, M. Kanai, Synlett 2020, 31, 784–787.
K. J. Malawska, S. Takano, K. Oisaki, H. Yanagisawa, M. Kikkawa, T. Tsukuda, M. Kanai, Bioconjug. Chem. 2023, 34, 781–788.
M. Slavíčková, M. Janoušková, A. Šimonová, H. Cahová, M. Kambová, H. Šanderová, L. Krásný, M. Hocek, Chem. Eur. J. 2018, 24, 8311–8314.
Y. Fujita, T. Fujita, Y. Miwa, J. Nihashi, J. Biol. Chem. 1986, 261, 13744–13753.
Y. Miwa, Y. Fujita, J. Biol. Chem. 1988, 15, 263, 13252–13257.
S. Rigali, A. Derouaux, F. Giannotta, J. Dusart, J. Biol. Chem. 2002, 277, 12507–12515.
C. R. Horne, H. Venugopal, S. Panjikar, D. M. Wood, A. Henrickson, E. Brookes, R. A. North, J. M. Murphy, R. Friemann, M. D. W. Griffin, G. Ramm, B. Demeler, R. C. J. Dobson Nat. Commun. 2021, 12, 1988.
J. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ronneberger, K. Tunyasuvunakool, R. Bates, A. Židek, A. Potapenko, A. Bridgland, C. Meyer, S. Kohl, J. A. Ballard, A. Cowie, B. Romera-Paredes, S. Nikolov, R. Jain, J. Adler, T. Back, S. Petersen, D. Reiman, E. Clancy, M. Zielinski, M. Steinegger, M. Pacholska, T. Berghammer, S. Bodenstein, D. Silver, O. Vinyals, A. W. Senior, K. Kavukcuoglu, P. Kohli, D. Hassabis Nature 2021, 596, 583–589.
J. Dadová, M. Vrábel, M. Adámik, M. Brázdová, R. Pohl, M. Fojta, M. Hocek, Chem. Eur. J. 2015, 21, 16091–16102.
P. M. E. Gramlich, C. T. Wirges, J. Gierlich, T. Carell, Org. Lett. 2008, 10, 249–251.
Hirschmann-Laborgeräte, Ringcaps 2021, https://hirschmann-laborgeraete.de/en/artikelgruppe/96001
Bruker, EPR Sofware/Xenone Software 2022, https://www.bruker.com/en/products-and-solutions/mr/epr-instruments/epr-software/xenon.html
N. Y. Buffalo, University Magnetic Resonance Center/EPR Spectrometer Guides 2022, http://www.nmrcenter.buffalo.edu/.
G. R. Eaton, S. S. Eaton, D. P. Barr, R. T. Weber, Quantitative EPR [online]. Springer Vienna 2010, DOI: https://doi.org/10.1007%2F978-3-211-92948-3.
J. Barton, M. Gulka, J. Tarabek, Y. Mindarava, Z. Wang, J. Schimer, H. Raabova, J. Bednar, M. Plenio, F. Jelezko, M. Nesladek, P. Cigler, ACS Nano 2020, 14, 12938–12950.
M. T. Marty, A. J. Baldwin, E. G. Marklund, G. K. A. Hochberg, J. L. P. Benesch, C. V. Robinson, Anal. Chem. 2015, 87, 4370–4376.
J. Písačková, K. Procházková, M. Fábry, P. Řezáčová, Cryst. Growth Des. 2013, 13, 844–848.
K. Procházková, K. Čermáková, P. Pachl, I. Sieglová, M. Fábry, Z. Otwinowski, P. Řezáčová, Acta Crystallogr. D Biol. Crystallogr. 2012, 68, 176–185.
U. B. Ericsson, B. M. Hallberg, G. T. Detitta, N. Dekker, P. Nordlund, Anal. Biochem. 2006, 357, 289–298.
H. Hernández, C. V. Robinson, Nat. Protoc. 2007, 2, 715–26.