The First In Vivo Study Shows That Gyrophoric Acid Changes Behavior of Healthy Laboratory Rats

. 2024 Jun 20 ; 25 (12) : . [epub] 20240620

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38928485

Grantová podpora
APVV-21-0321 Scientific Grant Agency of the Ministry of Education, Science, Research and Sport of the Slovak Republic and the Slovak Academy of Sciences
VEGA1/0658/20 Scientific Grant Agency of the Ministry of Education, Science, Research and Sport of the Slovak Republic and the Slovak Academy of Sciences
VEGA-1/0081/20 Scientific Grant Agency of the Ministry of Education, Science, Research and Sport of the Slovak Republic and the Slovak Academy of Sciences
VVGS-PF-2022-2136 Internal grant university schema
VVGS-2023-2561 Internal grant university schema

Gyrophoric acid (GA), a lichen secondary metabolite, has attracted more attention during the last years because of its potential biological effects. Until now, its effect in vivo has not yet been demonstrated. The aim of our study was to evaluate the basic physicochemical and pharmacokinetic properties of GA, which are directly associated with its biological activities. The stability of the GA in various pH was assessed by conducting repeated UV-VIS spectral measurements. Microsomal stability in rat liver microsomes was performed using Ultra-Performance LC/MS. Binding to human serum albumin (HSA) was assessed using synchronous fluorescence spectra, and molecular docking analysis was used to reveal the binding site of GA to HSA. In the in vivo experiment, 24 Sprague-Dawley rats (Velaz, Únetice, Czech Republic) were used. The animals were divided as follows. The first group (n = 6) included healthy males as control intact rats (♂INT), and the second group (n = 6) included healthy females as controls (♀INT). Groups three and four (♂GA/n = 6 and ♀GA/n = 6) consisted of animals with daily administered GA (10 mg/kg body weight) in an ethanol-water solution per os for a one-month period. We found that GA remained stable under various pH and temperature conditions. It bonded to human serum albumin with the binding constant 1.788 × 106 dm3mol-1 to reach the target tissue via this mechanism. In vivo, GA did not influence body mass gain, food, or fluid intake during the experiment. No liver toxicity was observed. However, GA increased the rearing frequency in behavioral tests (p < 0.01) and center crossings in the elevated plus-maze (p < 0.01 and p < 0.001, respectively). In addition, the time spent in the open arm was prolonged (p < 0.01 and p < 0.001, respectively). Notably, GA was able to pass through the blood-brain barrier, indicating its ability to permeate into the brain and to stimulate neurogenesis in the hilus and subgranular zone of the hippocampus. These observations highlight the potential role of GA in influencing brain function and neurogenesis.

Zobrazit více v PubMed

Crawford S. Lichens Used in Traditional Medicine. In: Ranković B., editor. Lichen Secondary Metabolites. Springer; Cham, Switzerland: 2015. pp. 27–80.

Simko P., Kisková T. Uncovering the anticancer potential of lichen secondary metabolites. J. Anal. Oncol. 2022;11:70–78. doi: 10.30683/1927-7229.2022.11.10. DOI

Paukov A., Teptina A., Ermoshin A., Kruglova E., Shabardina L. The Role of Secondary Metabolites and Bark Chemistry in Shaping Diversity and Abundance of Epiphytic Lichens. Front. For. Glob. Change. 2022;5:828211. doi: 10.3389/ffgc.2022.828211. DOI

Barbero M., Artuso E., Prandi C. Fungal anticancer metabolites: Synthesis towards drug discovery. Curr. Med. Chem. 2018;25:141–185. doi: 10.2174/0929867324666170511112815. PubMed DOI

Goga M., Elečko J., Marcinčinová M., Ručová D., Bačkorová M., Bačkor M. Lichen metabolites: An overview of some secondary metabolites and their biological potential. In: Mérillon J.M., Ramawat K., editors. Co-Evolution of Secondary Metabolites. Springer; Cham, Switzerland: 2020. pp. 175–209.

Ingelfinger R., Henke M., Roser L., Ulshöfer T., Calchera A., Singh G., Parnham M.J., Geisslinger G., Fürst R., Schmitt I. Unraveling the pharmacological potential of lichen extracts in the context of cancer and inflammation with a broad screening approach. Front. Pharmacol. 2020;11:1322. doi: 10.3389/fphar.2020.01322. PubMed DOI PMC

Molnár K., Farkas E. Current results on biological activities of lichen secondary metabolites: A review. Z. Für Naturforschung C. 2010;65:157–173. doi: 10.1515/znc-2010-3-401. PubMed DOI

Stanojković T. Investigations of lichen secondary metabolites with potential anticancer activity. In: Ranković B., editor. Lichen Secondary Metabolites: Bioactive Properties and Pharmaceutical Potential. Springer; Cham, Switzerland: 2019. pp. 155–174.

Mohammadi M., Bagheri L., Badreldin A., Fatehi P., Pakzad L., Suntres Z., van Wijnen A.J. Biological effects of gyrophoric acid and other lichen derived metabolites, on cell proliferation, apoptosis and cell signaling pathways. Chem.-Biol. Interact. 2022;351:109768. doi: 10.1016/j.cbi.2021.109768. PubMed DOI PMC

Buçukoglu T.Z., Albayrak S., Halici M.G., Tay T. Antimicrobial and Antioxidant Activities of Extracts and Lichen Acids Obtained from Some Umbilicaria Species from Central Anatolia, Turkey. J. Food Process. Preserv. 2013;37:1103–1110. doi: 10.1111/j.1745-4549.2012.00811.x. DOI

Lohézic-Le Dévéhat F., Legouin B., Couteau C., Boustie J., Coiffard L. Lichenic extracts and metabolites as UV filters. J. Photochem. Photobiol. B Biol. 2013;120:17–28. doi: 10.1016/j.jphotobiol.2013.01.009. PubMed DOI

Nguyen K.-H., Chollet-Krugler M., Gouault N., Tomasi S. UV-protectant metabolites from lichens and their symbiotic partners. Nat. Prod. Rep. 2013;30:1490–1508. doi: 10.1039/c3np70064j. PubMed DOI

Kumar KC S., Müller K. Lichen metabolites. 2. Antiproliferative and cytotoxic activity of gyrophoric, usnic, and diffractaic acid on human keratinocyte growth. J. Nat. Prod. 1999;62:821–823. doi: 10.1021/np980378z. PubMed DOI

Correché E.R., Enriz R.D., Piovano M., Garbarino J., Gómez-Lechón M.J. Cytotoxic and apoptotic effects on hepatocytes of secondary metabolites obtained from lichens. Altern. Lab. Anim. ATLA. 2004;32:605–615. doi: 10.1177/026119290403200611. PubMed DOI

Burlando B., Ranzato E., Volante A., Appendino G., Pollastro F., Verotta L. Antiproliferative effects on tumour cells and promotion of keratinocyte wound healing by different lichen compounds. Planta Medica. 2009;75:607–613. doi: 10.1055/s-0029-1185329. PubMed DOI

Bačkorová M., Bačkor M., Mikeš J., Jendželovský R., Fedoročko P. Variable responses of different human cancer cells to the lichen compounds parietin, atranorin, usnic acid and gyrophoric acid. Toxicol. Vitr. Int. J. Publ. Assoc. BIBRA. 2011;25:37–44. doi: 10.1016/j.tiv.2010.09.004. PubMed DOI

Kello M., Goga M., Kotorova K., Sebova D., Frenak R., Tkacikova L., Mojzis J. Screening Evaluation of Antiproliferative, Antimicrobial and Antioxidant Activity of Lichen Extracts and Secondary Metabolites In Vitro. Plants. 2023;12:611. doi: 10.3390/plants12030611. PubMed DOI PMC

Kosanić M., Ranković B. Antioxidant and antimicrobial properties of some lichens and their constituents. J. Med. Food. 2011;14:1624–1630. doi: 10.1089/jmf.2010.0316. PubMed DOI

Bačkorová M., Jendželovský R., Kello M., Bačkor M., Mikeš J., Fedoročko P. Lichen secondary metabolites are responsible for induction of apoptosis in HT-29 and A2780 human cancer cell lines. Toxicol. Vitr. 2012;26:462–468. doi: 10.1016/j.tiv.2012.01.017. PubMed DOI

Elečko J., Vilková M., Frenák R., Routray D., Ručová D., Bačkor M., Goga M. A Comparative Study of Isolated Secondary Metabolites from Lichens and Their Antioxidative Properties. Plants. 2022;11:1077. doi: 10.3390/plants11081077. PubMed DOI PMC

Norouzi H., Azizi A., Gholami M., Sohrabi M., Boustie J. Chemotype variations among lichen ecotypes of Umbilicaria aprina as revealed by LC-ESI-MS/MS: A survey of antioxidant phenolics. Environ. Sci. Pollut. Res. Int. 2020;27:40296–40308. doi: 10.1007/s11356-020-10053-2. PubMed DOI

Ristić S., Ranković B., Kosanić M., Stanojković T., Stamenković S., Vasiljević P., Manojlović I., Manojlović N. Phytochemical study and antioxidant, antimicrobial and anticancer activities of Melanelia subaurifera and Melanelia fuliginosa lichens. J. Food Sci. Technol. 2016;53:2804–2816. doi: 10.1007/s13197-016-2255-3. PubMed DOI PMC

Ureña-Vacas I., González-Burgos E., Divakar P.K., Gómez-Serranillos M.P. Lichen Extracts from Cetrarioid Clade Provide Neuroprotection against Hydrogen Peroxide-Induced Oxidative Stress. Molecules. 2022;27:6520. doi: 10.3390/molecules27196520. PubMed DOI PMC

Ibrahim N., Ibrahim H., Kim S., Nallet J.-P., Nepveu F. Interactions between antimalarial indolone-N-oxide derivatives and human serum albumin. Biomacromolecules. 2010;11:3341–3351. doi: 10.1021/bm100814n. PubMed DOI

Zhang Y., Shi S., Chen X., Zhang W., Huang K., Peng M. Investigation on the interaction between ilaprazole and bovine serum albumin without or with different C-ring flavonoids from the viewpoint of food–drug interference. J. Agric. Food Chem. 2011;59:8499–8506. doi: 10.1021/jf201796x. PubMed DOI

Tabassum S., Ahmad M., Afzal M., Zaki M., Bharadwaj P.K. Synthesis and structure elucidation of a copper (II) Schiff-base complex: In vitro DNA binding, pBR322 plasmid cleavage and HSA binding studies. J. Photochem. Photobiol. B Biol. 2014;140:321–331. doi: 10.1016/j.jphotobiol.2014.08.015. PubMed DOI

Zhang G., Wang L., Pan J. Probing the binding of the flavonoid diosmetin to human serum albumin by multispectroscopic techniques. J. Agric. Food Chem. 2012;60:2721–2729. doi: 10.1021/jf205260g. PubMed DOI

Lakowicz J.R. Principles of Fluorescence Spectroscopy. Springer; New York, NY, USA: 2006.

Topală T., Bodoki A., Oprean L., Oprean R. Bovine serum albumin interactions with metal complexes. Clujul Med. 2014;87:215. doi: 10.15386/cjmed-357. PubMed DOI PMC

Feroz S.R., Mohamad S.B., Bujang N., Malek S.N., Tayyab S. Multispectroscopic and molecular modeling approach to investigate the interaction of flavokawain B with human serum albumin. J. Agric. Food Chem. 2012;60:5899–5908. doi: 10.1021/jf301139h. PubMed DOI

Li X., Chen D., Wang G., Lu Y. Study of interaction between human serum albumin and three antioxidants: Ascorbic acid, α-tocopherol, and proanthocyanidins. Eur. J. Med. Chem. 2013;70:22–36. doi: 10.1016/j.ejmech.2013.09.033. PubMed DOI

Schellman J.A. Temperature, stability, and the hydrophobic interaction. Biophys. J. 1997;73:2960–2964. doi: 10.1016/S0006-3495(97)78324-3. PubMed DOI PMC

Wani T.A., Bakheit A.H., Al-Majed A.-R.A., Bhat M.A., Zargar S. Study of the interactions of bovine serum albumin with the new anti-inflammatory agent 4-(1, 3-Dioxo-1, 3-dihydro-2 H-isoindol-2-yl)-N′-[(4-ethoxy-phenyl) methylidene] benzohydrazide using a multi-spectroscopic approach and molecular docking. Molecules. 2017;22:1258. doi: 10.3390/molecules22081258. PubMed DOI PMC

Alsaif N.A., Wani T.A., Bakheit A.H., Zargar S. Multi-spectroscopic investigation, molecular docking and molecular dynamic simulation of competitive interactions between flavonoids (quercetin and rutin) and sorafenib for binding to human serum albumin. Int. J. Biol. Macromol. 2020;165:2451–2461. doi: 10.1016/j.ijbiomac.2020.10.098. PubMed DOI

Huang S., Qiu H., Lu S., Zhu F., Xiao Q. Study on the molecular interaction of graphene quantum dots with human serum albumin: Combined spectroscopic and electrochemical approaches. J. Hazard. Mater. 2015;285:18–26. doi: 10.1016/j.jhazmat.2014.11.019. PubMed DOI

Hale M.E. 2,4-Dihydroxy depsides in North American lichens. Trans. Kans. Acad. Sci. 1956;59:229–232. doi: 10.2307/3626965. DOI

Yang F., Zhang Y., Liang H. Interactive association of drugs binding to human serum albumin. Int. J. Mol. Sci. 2014;15:3580–3595. doi: 10.3390/ijms15033580. PubMed DOI PMC

Simko P., Leskanicova A., Suvakova M., Blicharova A., Karasova M., Goga M., Kolesarova M., Bojkova B., Majerova P., Zidekova N. Biochemical Properties of Atranorin-Induced Behavioral and Systematic Changes of Laboratory Rats. Life. 2022;12:1090. doi: 10.3390/life12071090. PubMed DOI PMC

Urbanska N., Simko P., Leskanicova A., Karasova M., Jendzelovska Z., Jendzelovsky R., Rucova D., Kolesarova M., Goga M., Backor M. Atranorin, a secondary metabolite of lichens, exhibited anxiolytic/antidepressant activity in Wistar rats. Life. 2022;12:1850. doi: 10.3390/life12111850. PubMed DOI PMC

Araújo H.D.A.d., Silva H.A.M.F., Silva Júnior J.G.d., Albuquerque M.C.P.d.A., Coelho L.C.B.B., Aires A.d.L. The Natural Compound Hydrophobic Usnic Acid and Hydrophilic Potassium Usnate Derivative: Applications and Comparisons. Molecules. 2021;26:5995. doi: 10.3390/molecules26195995. PubMed DOI PMC

Yin L.K., Tong K.S. Elevated Alt and Ast in an Asymptomatic Person: What the primary care doctor should do? Malays. Fam. Physician. 2009;4:98. PubMed PMC

Park J.H., Choi J., Jun D.W., Han S.W., Yeo Y.H., Nguyen M.H. Low alanine aminotransferase cut-off for predicting liver outcomes; a nationwide population-based longitudinal cohort study. J. Clin. Med. 2019;8:1445. doi: 10.3390/jcm8091445. PubMed DOI PMC

Carrillo J., Howard E.C., Moten M., Houck B.D., Czachowski C.L., Gonzales R.A. A 3-day exposure to 10% ethanol with 10% sucrose successfully initiates ethanol self-administration. Alcohol. 2008;42:171–178. doi: 10.1016/j.alcohol.2008.01.005. PubMed DOI PMC

Kisková T., Ekmekcioglu C., Garajová M., Orendáš P., Bojková B., Bobrov N., Jäger W., Kassayová M., Thalhammer T. A combination of resveratrol and melatonin exerts chemopreventive effects in N-methyl-N-nitrosourea-induced rat mammary carcinogenesis. Eur. J. Cancer Prev. 2012;21:163–170. doi: 10.1097/CEJ.0b013e32834c9c0f. PubMed DOI

Chen W., Wang Z., Ma C., Ma X., Meng W., Yin F., Yang Y. Tactile cues are important to environmental novelty during repeated open field tests. Behav. Process. 2023;204:104796. doi: 10.1016/j.beproc.2022.104796. PubMed DOI

Sturman O., Germain P.-L., Bohacek J. Exploratory rearing: A context-and stress-sensitive behavior recorded in the open-field test. Stress. 2018;21:443–452. doi: 10.1080/10253890.2018.1438405. PubMed DOI

Ortman H.A., Newby M.L., Acevedo J., Siegel J.A. The acute effects of multiple doses of methamphetamine on locomotor activity and anxiety-like behavior in adolescent and adult mice. Behav. Brain Res. 2021;405:113186. doi: 10.1016/j.bbr.2021.113186. PubMed DOI

Rojas-Carvajal M., Fornaguera J., Mora-Gallegos A., Brenes J.C. Testing experience and environmental enrichment potentiated open-field habituation and grooming behaviour in rats. Anim. Behav. 2018;137:225–235. doi: 10.1016/j.anbehav.2018.01.018. DOI

Campos-Cardoso R., Novaes L.S., Godoy L.D., Dos Santos N.B., Perfetto J.G., Lazarini-Lopes W., Garcia-Cairasco N., Padovan C.M., Munhoz C.D. The resilience of adolescent male rats to acute stress-induced delayed anxiety is age-related and glucocorticoid release-dependent. Neuropharmacology. 2023;226:109385. doi: 10.1016/j.neuropharm.2022.109385. PubMed DOI

Beaman E.E., Bonde A.N., Larsen S.M.U., Ozenne B., Lohela T.J., Nedergaard M., Gíslason G.H., Knudsen G.M., Holst S.C. Blood–brain barrier permeable β-blockers linked to lower risk of Alzheimer’s disease in hypertension. Brain. 2023;146:1141–1151. doi: 10.1093/brain/awac076. PubMed DOI PMC

Bickel U. Modeling blood–brain barrier permeability to solutes and drugs in vivo. Pharmaceutics. 2022;14:1696. doi: 10.3390/pharmaceutics14081696. PubMed DOI PMC

Latacz G., Lubelska A., Jastrzębska-Więsek M., Partyka A., Marć M.A., Satała G., Wilczyńska D., Kotańska M., Więcek M., Kamińska K. The 1,3,5-triazine derivatives as innovative chemical family of 5-HT6 serotonin receptor agents with therapeutic perspectives for cognitive impairment. Int. J. Mol. Sci. 2019;20:3420. doi: 10.3390/ijms20143420. PubMed DOI PMC

Studzińska-Sroka E., Majchrzak-Celińska A., Zalewski P., Szwajgier D., Baranowska-Wójcik E., Żarowski M., Plech T., Cielecka-Piontek J. Permeability of Hypogymnia physodes extract component—Physodic acid through the blood–brain barrier as an important argument for its anticancer and neuroprotective activity within the central nervous system. Cancers. 2021;13:1717. doi: 10.3390/cancers13071717. PubMed DOI PMC

Di L., Kerns E.H., Li S.Q., Petusky S.L. High throughput microsomal stability assay for insoluble compounds. Int. J. Pharm. 2006;317:54–60. doi: 10.1016/j.ijpharm.2006.03.007. PubMed DOI

Chatterjee T., Pal A., Dey S., Chatterjee B.K., Chakrabarti P. Interaction of virstatin with human serum albumin: Spectroscopic analysis and molecular modeling. PLoS ONE. 2012;7:e37468. doi: 10.1371/journal.pone.0037468. PubMed DOI PMC

Petitpas I., Petersen C.E., Ha C.-E., Bhattacharya A.A., Zunszain P.A., Ghuman J., Bhagavan N.V., Curry S. Structural basis of albumin–thyroxine interactions and familial dysalbuminemic hyperthyroxinemia. Proc. Natl. Acad. Sci. USA. 2003;100:6440–6445. doi: 10.1073/pnas.1137188100. PubMed DOI PMC

Kertys M., Grendar M., Horak V., Zidekova N., Skalnikova H.K., Mokry J., Halasova E., Strnadel J. Metabolomic characterisation of progression and spontaneous regression of melanoma in the melanoma-bearing Libechov minipig model. Melanoma Res. 2021;31:140–151. doi: 10.1097/CMR.0000000000000722. PubMed DOI

Kertys M., Grendar M., Kosutova P., Mokra D., Mokry J. Plasma based targeted metabolomic analysis reveals alterations of phosphatidylcholines and oxidative stress markers in guinea pig model of allergic asthma. Biochim. Biophys. Acta (BBA)-Mol. Basis Dis. 2020;1866:165572. doi: 10.1016/j.bbadis.2019.165572. PubMed DOI

Majerova P., Hanes J., Olesova D., Sinsky J., Pilipcinec E., Kovac A. Novel blood–brain barrier shuttle peptides discovered through the phage display method. Molecules. 2020;25:874. doi: 10.3390/molecules25040874. PubMed DOI PMC

Pardridge W.M. The blood-brain barrier: Bottleneck in brain drug development. NeuroRx. 2005;2:3–14. doi: 10.1602/neurorx.2.1.3. PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...