From Personal Care to Coastal Concerns: Investigating Polyethylene Glycol Impact on Mussel's Antioxidant, Physiological, and Cellular Responses
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
38929173
PubMed Central
PMC11200630
DOI
10.3390/antiox13060734
PII: antiox13060734
Knihovny.cz E-zdroje
- Klíčová slova
- aquatic pollution, digestive gland, gills, mussels, personal care products,
- Publikační typ
- časopisecké články MeSH
Pharmaceutical and personal care products (PPCPs) containing persistent and potentially hazardous substances have garnered attention for their ubiquitous presence in natural environments. This study investigated the impact of polyethylene glycol (PEG), a common PPCP component, on Mytilus galloprovincialis. Mussels were subjected to two PEG concentrations (E1: 0.1 mg/L and E2: 10 mg/L) over 14 days. Oxidative stress markers in both gills and digestive glands were evaluated; cytotoxicity assays were performed on haemolymph and digestive gland cells. Additionally, cell volume regulation (RVD assay) was investigated to assess physiological PEG-induced alterations. In the gills, PEG reduced superoxide dismutase (SOD) activity and increased lipid peroxidation (LPO) at E1. In the digestive gland, only LPO was influenced, while SOD activity and oxidatively modified proteins (OMPs) were unaltered. A significant decrease in cell viability was observed, particularly at E2. Additionally, the RVD assay revealed disruptions in the cells subjected to E2. These findings underscore the effects of PEG exposure on M. galloprovincialis. They are open to further investigations to clarify the environmental implications of PPCPs and the possibility of exploring safer alternatives.
Department of Biology Ecology and Earth Science University of Calabria 87036 Rende Italy
Department of Ecosustainable Marine Biotechnology Stazione Zoologica Anton Dohrn 80122 Naples Italy
Department of Veterinary Sciences University of Messina 98168 Messina Italy
Zooprophylactic Institute of Sicily Via Gino Marinuzzi 90129 Palermo Italy
Zobrazit více v PubMed
Gogoi A., Mazumder P., Tyagi V.K., Chaminda G.T., An A.K., Kumar M. Occurrence and fate of emerging contaminants in water environment: A review. Groundw. Sustain. Dev. 2018;6:169–180. doi: 10.1016/j.gsd.2017.12.009. DOI
Osuoha J.O., Anyanwu B.O., Ejileugha C. Pharmaceuticals and personal care products as emerging contaminants: Need for combined treatment strategy. JHM Adv. 2023;9:100206. doi: 10.1016/j.hazadv.2022.100206. DOI
Pinheiro M., Martins I., Raimundo J., Caetano M., Neuparth T., Santos M.M. Stressors of emerging concern in deep-sea environments: Microplastics, pharmaceuticals, personal care products and deep-sea mining. Sci. Total Environ. 2023;876:162557. doi: 10.1016/j.scitotenv.2023.162557. PubMed DOI
Yusuf A., O’Flynn D., White B., Holland L., Parle-McDermott A., Lawler J., McCloughlin T., Harold D., Huerta B., Regan F. Monitoring of emerging contaminants of concern in the aquatic environment: A review of studies showing the application of effect-based measures. Anal. Methods. 2021;13:5120–5143. doi: 10.1039/D1AY01184G. PubMed DOI
Dewey H.M., Jones J.M., Keating M.R., Budhathoki-Uprety J. Increased use of disinfectants during the COVID-19 pandemic and its potential impacts on health and safety. ACS Chem. Health Saf. 2021;29:27–38. doi: 10.1021/acs.chas.1c00026. DOI
Gerstell E., Marchessou S., Schmidt J., Spagnuolo E. How COVID-19 Is Changing the World of Beauty. McKinsey & Company; New York, NY, USA: 2020. pp. 1–8.
Picó Y., Barceló D. Microplastics and other emerging contaminants in the environment after COVID-19 pandemic: The need of global reconnaissance studies. Curr. Opin. Environ. Sci. Health. 2023;33:100468. doi: 10.1016/j.coesh.2023.100468. PubMed DOI PMC
Wang H., Xi H., Xu L., Jin M., Zhao W., Liu H. Ecotoxicological effects, environmental fate and risks of pharmaceutical and personal care products in the water environment: A review. Sci. Total Enivron. 2021;788:147819. doi: 10.1016/j.scitotenv.2021.147819. PubMed DOI
Puri M., Gandhi K., Suresh Kumar M. A global overview of endocrine disrupting chemicals in the environment: Occurrence, effects, and treatment methods. Int. J. Environ. Sci. Technol. 2022;20:12875–12902. doi: 10.1007/s13762-022-04636-4. DOI
Merola C., Perugini M., Conte A., Angelozzi G., Bozzelli M., Amorena M. Embryotoxicity of methylparaben to zebrafish (Danio rerio) early-life stages. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2020;236:108792. doi: 10.1016/j.cbpc.2020.108792. PubMed DOI
Quintaneiro C., Teixeira B., Benedé J.L., Chisvert A., Soares A.M., Monteiro M.S. Toxicity effects of the organic UV-filter-4 Methylbenzylidene chamhor in zebrafish embryos. Chemosphere. 2019;218:273–281. doi: 10.1016/j.chemosphere.2018.11.096. PubMed DOI
Tumová J., Šauer P., Golovko O., Ucun O.K., Grabic R., Máchová J., Kroupová H.K. Effect of polycyclic musk compound on aquatic organisms: A critical literature review supplemented by own data. Sci. Total Environ. 2019;651:2235–2246. doi: 10.1016/j.scitotenv.2018.10.028. PubMed DOI
Zicarelli G., Multisanti C.R., Falco F., Faggio C. Evaluation of toxicity of Personal Care Products (PCPs) in freshwaters: Zebrafish as a model. Environ. Toxicol. Pharmacol. 2022;94:103923. doi: 10.1016/j.etap.2022.103923. PubMed DOI
Sellaturay P., Nasser S., Islam S., Gurugama P., Ewan P.W. Polyethylene glycol (PEG) is a cause of anaphylaxis to the Pfizer/BioNTech mRNA COVID-19 vaccine. Clin. Exp. Allergy. 2021;51:861. doi: 10.1111/cea.13874. PubMed DOI PMC
Webster R., Elliott V., Park B.K., Walker D., Hankin M., Taupin P. PEGylated Protein Drugs: Basic Science and Clinical Applications. Springer; Berlin/Heidelberg, Germany: 2009. PEG and PEG conjugates toxicity: Towards an understanding of the toxicity of PEG and its relevance to PEGylated biologicals; pp. 127–146.
Jang H.J., Shin C.Y., Kim K.B. Safety evaluation of polyethylene glycol (PEG) compounds for cosmetic use. Toxicol. Res. 2015;31:105–136. doi: 10.5487/TR.2015.31.2.105. PubMed DOI PMC
Traverso-Soto J.M., Rojas-Ojeda P., Sanz J.L., González-Mazo E., Lara-Martín P.A. Anaerobic degradation of alcohol ethoxylates and polyethylene glycols in marine sediments. Sci. Total Environ. 2016;544:118–124. doi: 10.1016/j.scitotenv.2015.11.140. PubMed DOI
Fruijtier-Pölloth C. Safety assessment on polyethylene glycols (PEGs) and their derivatives as used in cosmetic products. Toxicology. 2005;214:1–38. doi: 10.1016/j.tox.2005.06.001. PubMed DOI
Imik H., Gunlu A. Effects of sodium bicarbonate, polyethylene glycol and methionine added to rations with sorghum (Sorghum vulgare) in fattening lambs on growth performance, wool quality and some blood biochemical markers. Rev. Med. Vet. 2011;162:432–439.
Shi R. Polyethylene glycol repairs membrane damage and enhances functional recovery: A tissue engineering approach to spinal cord injury. Neurosci. Bull. 2013;29:460–466. doi: 10.1007/s12264-013-1364-5. PubMed DOI PMC
Leth P.M., Gregersen M. Ethylene glycol poisoning. Forensic Sci. Int. 2005;155:179–184. doi: 10.1016/j.forsciint.2004.11.012. PubMed DOI
Hatami M., Banaee M., Haghi B.N. Sub-lethal toxicity of chlorpyrifos alone and in combination with polyethylene glycol to common carp (Cyprinus carpio) Chemosphere. 2019;219:981–988. doi: 10.1016/j.chemosphere.2018.12.077. PubMed DOI
Impellitteri F., Riolo K., Multisanti C.R., Zicarelli G., Piccione G., Faggio C., Giannetto A. Evaluating quaternium-15 effects on Mytilus galloprovincialis: New insights on physiological and cellular responses. Sci. Total Environ. 2024;918:170568. doi: 10.1016/j.scitotenv.2024.170568. PubMed DOI
Miglioli A., Tredez M., Boosten M., Sant C., Carvalho J.E., Dru P., Canesi L., Schubert M., Dumollard R. The Mediterranean mussel Mytilus galloprovincialis: A novel model for developmental studies in mollusks. Development. 2024;151:dev202256. doi: 10.1242/dev.202256. PubMed DOI
Świacka K., Maculewicz J., Smolarz K., Szaniawska A., Caban M. Mytilidae as model organisms in the marine ecotoxicology of pharmaceuticals—A review. Environ. Pollut. 2019;254:113082. doi: 10.1016/j.envpol.2019.113082. PubMed DOI
Maqbool N., Shah I.M., Galib S., Ahmad F. Water Contamination through Xenobiotics and Their Toxic Effects on Aquatic Animals. In: Rather M.A., Amin A., Hajam Y.A., Jamwal A., Ahmad I., editors. Xenobiotics in Aquatic Animals. 1st ed. Springer; Singapore: 2023. pp. 101–122.
Campoy-Diaz A.D., Malanga G., Giraud-Billoud M., Vega I.A. Changes in the oxidative status and damage by non-essential elements in the digestive gland of the gastropod Pomacea canaliculate. Front. Physiol. 2023;14:1123977. doi: 10.3389/fphys.2023.1123977. PubMed DOI PMC
Zicarelli G., Faggio C., Blahova J., Riesova B., Hesova R., Doubkova V., Svobodova Z., Lakdawala P. Toxicity of water-soluble polymers polyethylene glycol and polyvinyl alcohol for fish and frog embryos. Sci. Total Environ. 2024;933:173154. doi: 10.1016/j.scitotenv.2024.173154. PubMed DOI
Moore M.N., Readman J.A., Readman J.W., Lowe D.M., Frickers P.E., Beesley A. Lysosomal cytotoxicity of carbon nanoparticles in cells of the molluscan immune system: An in vitro study. Nanotoxicology. 2009;3:40–45. doi: 10.1080/17435390802593057. DOI
Tresnakova N., Impellitteri F., Famulari S., Porretti M., Filice M., Caferro A., Savoca S., D’Iglio C., Imbrogno S., Albergamo A., et al. Fitness assessment of Mytilus galloprovincialis Lamarck, 1819 after exposure to herbicide metabolite propachlor ESA. Environ. Pollut. 2023;331:121878. doi: 10.1016/j.envpol.2023.121878. PubMed DOI
Filice M., Caferro A., Gattuso A., Sperone E., Agnisola C., Faggio C., Cerra M.C., Imbrogno S. Effects of environmental hypoxia on the goldfish skeletal muscle: Focus on oxidative status and mitochondrial dynamics. J. Contam. Hydrol. 2024;261:104299. doi: 10.1016/j.jconhyd.2024.104299. PubMed DOI
Tkachenko H., Grudniewska J. Evaluation of oxidative stress markers in the heart and liver of rainbow trout (Oncorhynchus mykiss Walbaum) exposed to the formalin. Fish Physiol. Biochem. 2016;42:1819–1832. doi: 10.1007/s10695-016-0260-0. PubMed DOI PMC
Levine R.L., Williams J.A., Stadtman E.P., Shacter E. Carbonyl assays for determination of oxidatively modified proteins. Methods Enzymol. 1994;233:246–357. PubMed
Marklund S., Marklund G. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur. J. Biochem. 1974;47:469–474. doi: 10.1111/j.1432-1033.1974.tb03714.x. PubMed DOI
Filice M., Leo S., Mazza R., Amelio D., Garofalo F., Imbrogno S., Cerra M.C., Gattuso A. The heart of the adult goldfish Carassius auratus as a target of Bisphenol A: A multifaceted analysis. Environ. Poll. 2021;269:116177. doi: 10.1016/j.envpol.2020.116177. PubMed DOI
Carrington E., Waite J.H., Sara G., Sebens K.P. Mussels as a model system for integrative ecomechanics. Ann. Rev. Mar. Sci. 2015;7:443–469. doi: 10.1146/annurev-marine-010213-135049. PubMed DOI
Curpan A.S., Impellitteri F., Plavan G., Ciobica A., Faggio C. Mytilus galloprovincialis: An essential, low-cost model organism for the impact of xenobiotics on oxidative stress and public health. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2022;256:109302. doi: 10.1016/j.cbpc.2022.109302. PubMed DOI
Porretti M., Impellitteri F., Caferro A., Albergamo A., Litrenta F., Filice M., Imbrogno S., Di Bella G., Faggio C. Assessment of the effects of non-phthalate plasticizer DEHT on the bivalve molluscs Mytilus galloprovincialis. Chemosphere. 2023;336:139273. doi: 10.1016/j.chemosphere.2023.139273. PubMed DOI
Santovito G., Trentin E., Gobbi I., Bisaccia P., Tallandini L., Irato P. Non-enzymatic antioxidant responses of Mytilus galloprovincialis: Insights into physiological role against metal-induced oxidative stress. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2021;240:108909. doi: 10.1016/j.cbpc.2020.108909. PubMed DOI
Cruz P., Cuccaro A., Pretti C., He Y., Soares A.M., Freitas R. Comparative subcellular responses to pharmaceutical exposures in the mussel Mytilus galloprovincialis: An in vitro study. Environ. Toxicol. Pharmacol. 2023;104:104314. doi: 10.1016/j.etap.2023.104314. PubMed DOI
Auguste M., Lasa A., Balbi T., Pallavicini A., Vezzulli L., Canesi L. Impact of nanoplastics on hemolymph immune parameters and microbiota composition in Mytylus galloprovincialis. Mar. Envrion. Resear. 2020;159:105017. doi: 10.1016/j.marenvres.2020.105017. PubMed DOI
Panebianco A., Rey-Campos M., Romero A., Diaz A.P., Novoa B., Figueras A. Mytilus galloprovincialis releases immunologically functional haemocytes to the intervalvar space in response to tissue injury and infection. Fish Shellfish Immun. 2023;138:108806. doi: 10.1016/j.fsi.2023.108806. PubMed DOI
Wehner F., Olsen H., Tinel H., Kinne-Saffran E., Kinne R.K. Cell volume regulation: Osmolytes, osmolyte transport, and signal transduction. Rev. Physiol. Biochem. Pharmacol. 2003;148:1–80. PubMed
Hoffmann E.K., Lambert I.H., Pedersen S.F. Physiology of cell volume regulation in vertebrates. Physiol. Rev. 2009;89:193–277. doi: 10.1152/physrev.00037.2007. PubMed DOI
Barmo C., Ciacci C., Canonico B., Fabbri R., Cortese K., Balbi T., Marcomini A., Pojana G., Gallo G., Canesi L. In vivo effects of n-TiO2 on digestive gland and immune function of the marine bivalve Mytilus galloprovincialis. Aquat. Toxicol. 2013;132:9–18. doi: 10.1016/j.aquatox.2013.01.014. PubMed DOI
Juan C.A., Pérez de la Lastra J.M., Plou F.J., Pérez-Lebeña E. The chemistry of reactive oxygen species (ROS) revisited: Outlining their role in biological macromolecules (DNA, lipids and proteins) and induced pathologies. Int. J. Mol. Sci. 2021;22:4642. doi: 10.3390/ijms22094642. PubMed DOI PMC
Sies H., Berndt C., Jones D.P. Oxidative Stress. Ann. Rev. Bioch. 2017;86:715–748. doi: 10.1146/annurev-biochem-061516-045037. PubMed DOI
Filice M., Reinero F.R., Cerra M.C., Faggio C., Leonetti F.L., Micarelli P., Giglio G., Sperone E., Barca D., Imbrogno S. Contamination by trace elements and oxidative stress in the skeletal muscle of Scyliorhinus canicula from the Central Tyrrhenian Sea. Antioxidants. 2023;12:524. doi: 10.3390/antiox12020524. PubMed DOI PMC
Vélez-Alavez M., Labrada-Martagón V., Méndez-Rodriguez L.C., Galván-Magaña F., Zenteno-Savín T. Oxidative stress indicators and trace element concentrations in tissues of mako shark (Isurus oxyrinchus) Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2013;165:508–514. doi: 10.1016/j.cbpa.2013.03.006. PubMed DOI
Liu H., Sun P., Liu H., Yang S., Wang L., Wang Z. Hepatic oxidative stress biomarker responses in freshwater fish Carassius auratus exposed to four benzophenone UV filters. Ecotoxicol. Environ. Saf. 2015;119:116–122. doi: 10.1016/j.ecoenv.2015.05.017. PubMed DOI
Silva D.C., Serrano L., Oliveira T.M., Mansano A.S., Almeida E.A., Vieira E.M. Effects of parabens on antioxidant system and oxidative damages in Nile tilapia (Oreochromis niloticus) Ecotoxicol. Environ. Saf. 2018;162:85–91. doi: 10.1016/j.ecoenv.2018.06.076. PubMed DOI
Freitas R., Silvestro S., Coppola F., Costa S., Meucci V., Battaglia F., Intorre L., Soares A.M.V.M., Pretti C., Faggio C. Toxic impacts induced by Sodium lauryl sulfate in Mytilus galloprovincialis. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2020;242:110656. doi: 10.1016/j.cbpa.2020.110656. PubMed DOI