• This record comes from PubMed

The Influence of Geographical Origin on Poplar Propolis Composition and the Impact of Human Microbiota

. 2024 Jun 11 ; 17 (6) : . [epub] 20240611

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
PB/ZCHTZ/2024 Ministry of Science and Higher Education

Ethanol extracts obtained from 13 poplar propolis samples originating from various European countries by traditional maceration were tested for total polyphenols, flavonoid content, and antioxidant activity. Moreover, the content of 18 polyphenolic compounds (from the group of phenolic acids and flavonoids) was determined using the HPLC method. The inhibitory effect of six selected extracts with the highest activity was assessed by well-diffusion method against five strains (Bifidobacterium spp., L. rhamnosus, L. acidophilus, E. coli, and Bacteroides spp.) of intestinal bacteria self-isolated from the faeces of obese probands with the use of selective media. It was found that the antioxidant activity of propolis varied depending on geographical origin and even among samples from the same region, which indicates that some other factors also influence propolis quality. The samples of different geographical origin varied mainly in the share of individual phenolic compounds, and it was not possible to find a characteristic marker of origin, excluding the galangin present in the Polish samples only. Assessing the inhibitory activity of propolis (in the range of 70 mg to 10 µg per mL) indicated that the concentration of 100 µg/mL was found as being safe for tested fecal bacteria (Bifidobacterium spp., L. rhamnosus, L. acidophilus, E. coli, and Bacteroides spp.). As no negative effect of low doses of propolis on the intestinal microflora was found, it can be suggested that its use in recommended doses brings only beneficial effects to the body.

See more in PubMed

Özkök A., Keskin M., Tanuğur Samancı A.E., Yorulmaz Önder E., Takma Ç. Determination of antioxidant activity and phenolic compounds for basic standardization of Turkish propolis. Appl. Biol. Chem. 2021;64:37. doi: 10.1186/s13765-021-00608-3. PubMed DOI PMC

Braakhuis A. Evidence on the health benefits of supplemental propolis. Nutrients. 2019;11:2705. doi: 10.3390/nu11112705. PubMed DOI PMC

Kocot J., Kiełczykowska M., Luchowska-Kocot D., Kurzepa J., Musik I. Antioxidant potential of propolis, bee pollen, and royal jelly: Possible medical application. Oxid. Med. Cell. Longev. 2018;2018:7074209. doi: 10.1155/2018/7074209. PubMed DOI PMC

Woźniak M., Mrówczyńska L., Waśkiewicz A., Rogoziński T., Ratajczak I. Phenolic profile and antioxidant activity of propolis extracts from Poland. Nat. Prod. Commun. 2019;14:1–7. doi: 10.1177/1934578X19849777. DOI

Rivera-Yañez N., Rivera-Yañez C.R., Pozo-Molina G., Méndez-Catalá C.F., Méndez-Cruz A.R., Nieto-Yañez O. Biomedical properties of propolis on diverse chronic diseases and its potential applications and health benefits. Nutrients. 2021;13:78. doi: 10.3390/nu13010078. PubMed DOI PMC

Akbar A., Gul Z., Aziz S., Sadiq M.B., Achakzai J.K., Saeed S., Chein S.H., Sher H. Bio-Functional Potential and Biochemical Properties of Propolis Collected from Different Regions of Balochistan Province of Pakistan. Oxid. Med. Cell. Longev. 2022;2022:7585406. doi: 10.1155/2022/7585406. PubMed DOI PMC

Ahn M.R., Kumazawa S., Hamasaka T., Bang K.S., Nakayama T. Antioxidant activity and constituents of propolis collected in various areas of Korea. J. Agric. Food Chem. 2004;52:7286–7292. doi: 10.1021/jf048726s. PubMed DOI

Kurek-Górecka A., Keskin Ş., Bobis O., Felitti R., Górecki M., Otręba M., Stojko J., Olczyk P., Kolayli S., Rzepecka-Stojko A. Comparison of the Antioxidant Activity of Propolis Samples from Different Geographical Regions. Plants. 2022;11:1203. doi: 10.3390/plants11091203. PubMed DOI PMC

Miłek M., Ciszkowicz E., Tomczyk M., Sidor E., Zaguła G., Lecka-zlachta K., Pasternakiewicz A., Dżugan M. Poplar-Type Polish Propolis Considering Local Flora Diversity Breast Cancer Cells. Molecules. 2022;27:725. doi: 10.3390/molecules27030725. PubMed DOI PMC

Woźniak M., Sip A., Mrówczyńska L., Broniarczyk J., Waśkiewicz A., Ratajczak I. Biological Activity and Chemical Composition of Propolis from Various Regions of Poland. Molecules. 2023;28:141. doi: 10.3390/molecules28010141. PubMed DOI PMC

Yosri N., El-Wahed A.A.A., Ghonaim R., Khattab O.M., Sabry A., Ibrahim M.A.A., Moustafa M.F., Guo Z., Zou X., Algethami A.F.M., et al. Anti-Viral and Immunomodulatory Properties of Propolis: Chemical Diversity, Pharmacological Properties, Preclinical and Clinical Applications, and In Silico Potential against SARS-CoV-2. Foods. 2021;10:1776. doi: 10.3390/foods10081776. PubMed DOI PMC

Rocha M.P., Amorim J.M., Lima W.G., Brito J.C.M., da Cruz Nizer W.S. Effect of honey and propolis, compared to acyclovir, against Herpes Simplex Virus (HSV)-induced lesions: A systematic review and meta-analysis. J. Ethnopharmacol. 2022;287:114939. doi: 10.1016/j.jep.2021.114939. PubMed DOI

Widelski J., Gaweł-Bęben K., Czech K., Paluch E., Bortkiewicz O., Kozachok S., Mroczek T., Okińczyc P. Extracts from European Propolises as Potent Tyrosinase Inhibitors. Molecules. 2023;28:55. doi: 10.3390/molecules28010055. PubMed DOI PMC

Mihai C.M., Al Mărghitaş L., Dezmirean D.S., Bărnuţiu L. Correlation between Polyphenolic Profile and Antioxidant Activity of Propolis from Transylvania. Sci. Pap. Anim. Sci. Biotechnol. 2011;44:100–103.

Osés S.M., Marcos P., Azofra P., de Pabl A., Fernández-Muíño M.Á., Sancho M.T. Phenolic profile, antioxidant capacities and enzymatic inhibitory activities of propolis from different geographical areas: Needs for analytical harmonization. Antioxidants. 2020;9:75. doi: 10.3390/antiox9010075. PubMed DOI PMC

Pobiega K., Kot A.M., Przybył J.L., Synowiec A., Gniewosz M. Comparison of the Chemical Composition and Antioxidant Properties of Propolis from Urban Apiaries. Molecules. 2023;28:6744. doi: 10.3390/molecules28186744. PubMed DOI PMC

Ozdal T., Ceylan F.D., Eroglu N., Kaplan M., Olgun E.O., Capanoglu E. Investigation of antioxidant capacity, bioaccessibility and LC-MS/MS phenolic profile of Turkish propolis. Food Res. Int. 2019;122:528–536. doi: 10.1016/j.foodres.2019.05.028. PubMed DOI

Kurek-Górecka A., Rzepecka-Stojko A., Górecki M., Stojko J., Sosada M., Swierczek-Zieba G. Structure and antioxidant activity of polyphenols derived from propolis. Molecules. 2014;19:78–101. doi: 10.3390/molecules19010078. PubMed DOI PMC

Socha R., Gałkowska D., Bugaj M., Juszczak L. Phenolic composition and antioxidant activity of propolis from various regions of Poland. Nat. Prod. Res. 2015;29:416–422. doi: 10.1080/14786419.2014.949705. PubMed DOI

Makarewicz M., Drożdż I., Tarko T., Duda-Chodak A. The interactions between polyphenols and microorganisms, especially gut microbiota. Antioxidants. 2021;10:188. doi: 10.3390/antiox10020188. PubMed DOI PMC

Zheng S., Zhang H., Liu R., Huang C.L., Li H., Deng Z.Y., Tsao R. Do short chain fatty acids and phenolic metabolites of the gut have synergistic anti-inflammatory effects?—New insights from a TNF-α-induced Caco-2 cell model. Food Res. Int. 2021;139:109833. doi: 10.1016/j.foodres.2020.109833. PubMed DOI

Kemperman R.A., Bolca S., Roger L.C., Vaughan E.E. Novel approaches for analysing gut microbes and dietary polyphenols: Challenges and opportunities. Microbiology. 2010;156:3224–3231. doi: 10.1099/mic.0.042127-0. PubMed DOI

Van Duynhoven J., Vaughan E.E., Jacobs D.M., Kemperman R.A., Van Velzen E.J.J., Gross G., Roger L.C., Possemiers S., Smilde A.K., Doré J., et al. Metabolic fate of polyphenols in the human superorganism. Proc. Natl. Acad. Sci. USA. 2011;108:4531–4538. doi: 10.1073/pnas.1000098107. PubMed DOI PMC

Wang L.-Q., Meselhy M.R., Li Y., Nakamura N., Min B.-S., Qin G.-W., Hattori M. The Heterocyclic Ring Fission and Dehydroxylation of Catechins and Related Compounds by Eubacterium sp. Strain SDG-2, a Human Intestinal Bacterium. Chem. Pharm. Bull. 2001;49:1640–1643. doi: 10.1248/cpb.49.1640. PubMed DOI

Unno T., Tamemoto K., Yayabe F., Kakuda T. Urinary Excretion of 5-(3′,4′-Dihydroxyphenyl)-γ-valerolactone, a Ring-Fission Metabolite of (−)-Epicatechin, in Rats and Its in Vitro. J. Agric. Food Chem. 2003;51:6893–6898. doi: 10.1021/jf034578e. PubMed DOI

Wang D., Ho L., Faith J., Ono K., Janle E.M., Lachcik P.J., Cooper B.R., Jannasch A.H., D’Arcy B.R., Williams B.A., et al. Role of intestinal microbiota in the generation of polyphenol-derived phenolic acid mediated attenuation of Alzheimer’s disease β-amyloid oligomerization. Mol. Nutr. Food Res. 2015;59:1025–1040. doi: 10.1002/mnfr.201400544. PubMed DOI PMC

Okińczyc P., Widelski J., Szperlik J., Żuk M., Mroczek T., Skalicka-Woźniak K., Sakipova Z., Widelska G., Kuś P.M. Impact of plant origin on eurasian propolis on phenolic profile and classical antioxidant activity. Biomolecules. 2021;11:68. doi: 10.3390/biom11010068. PubMed DOI PMC

Tumbarski Y., Todorova M., Topuzova M., Gineva G., Yanakieva V., Ivanov I., Petkova N. Comparative Study on Physicochemical, Antioxidant and Antimicrobial Properties of Propolis Collected from Different Regions of Bulgaria. J. Apic. Sci. 2023;67:37–56. doi: 10.2478/jas-2023-0004. DOI

Ristivojević P., Trifković J., Andrić F., Milojković-Opsenica D. Poplar-type propolis: Chemical composition, botanical origin and biological activity. Nat. Prod. Commun. 2015;10:1869–1876. doi: 10.1177/1934578x1501001117. PubMed DOI

Altuntaş Ü., Güzel İ., Özçelik B. Phenolic Constituents, Antioxidant and Antimicrobial Activity and Clustering Analysis of Propolis Samples Based on PCA from Different Regions of Anatolia. Molecules. 2023;28:1121. doi: 10.3390/molecules28031121. PubMed DOI PMC

Zhu L., Zhang J., Yang H., Li G., Li H., Deng Z., Zhang B. Propolis polyphenols: A review on the composition and anti-obesity mechanism of different types of propolis polyphenols. Front. Nutr. 2023;10:1066789. doi: 10.3389/fnut.2023.1066789. PubMed DOI PMC

Pobiega K., Gniewosz M., Kraśniewska K. Antimicrobial and antiviral properties of different types of propolis. Zesz. Probl. Postępów Nauk Rol. 2018;589:69–79. doi: 10.22630/zppnr.2017.589.22. DOI

Omidi B., Sarveahrabi Y., Nejati Khoei S. Comparison of the Effect of Fluoride 0.2% and a Combined Mouthwash (Flavonoid Compounds and Fluoride 0.2%) Against Streptococcus mutans and Lactobacillus acidophilus: In Silico and In Vitro Study. Avicenna J. Dent. Res. 2023;15:142–149. doi: 10.34172/ajdr.1676. DOI

Wexler H.M. Bacteroides: The good, the bad, and the nitty-gritty. Clin. Microbiol. Rev. 2007;20:593–621. doi: 10.1128/CMR.00008-07. PubMed DOI PMC

Alkhaldy A., Edwards C.A., Combet E. The urinary phenolic acid profile varies between younger and older adults after a polyphenol-rich meal despite limited differences in in vitro colonic catabolism. Eur. J. Nutr. 2019;58:1095–1111. doi: 10.1007/s00394-018-1625-1. PubMed DOI PMC

Kawabata K., Sugiyama Y., Sakano T., Ohigashi H. Flavonols enhanced production of anti-inflammatory substance(s) by bifidobacterium adolescentis: Prebiotic actions of galangin, quercetin, and fisetin. BioFactors. 2013;39:422–429. doi: 10.1002/biof.1081. PubMed DOI

Alves-Santos A.M., Sugizaki C.S.A., Lima G.C., Naves M.M.V. Prebiotic effect of dietary polyphenols: A systematic review. J. Funct. Foods. 2020;74:104169. doi: 10.1016/j.jff.2020.104169. DOI

Ferreira de Brito L., Bergara Pereira F., Lorenzon M.C., Castro R.N., Laureano Melo R., Guerra A.F., Luchese R.H. What is the Effect of Propolis Extracts against Pathogenic Microorganisms and on Potentially Probiotic Strains of Lacticaseibacillus and Limosilactobacillus? ACS Food Sci. Technol. 2022;2:493–502. doi: 10.1021/acsfoodscitech.1c00267. DOI

Wang S., Yao J., Zhou B., Yang J., Chaudry M.T., Wang M., Xiao F., Li Y., Yin W. Bacteriostatic effect of quercetin as an antibiotic alternative in vivo and its antibacterial mechanism in vitro. J. Food Prot. 2018;81:68–78. doi: 10.4315/0362-028X.JFP-17-214. PubMed DOI

Liu H.N., Liu Y., Hu L.L., Suo Y.L., Zhang L., Jin F., Feng X.A., Teng N., Li Y. Effects of dietary supplementation of quercetin on performance, egg quality, cecal microflora populations, and antioxidant status in laying hens. Poult. Sci. 2014;93:347–353. doi: 10.3382/ps.2013-03225. PubMed DOI

Kačániová M., Rovná K., Arpášová H., Čuboň J., Hleba L., Pochop J., Kunová S., Haščík P. In vitro and In vivo antimicrobial activity of propolis on the microbiota from gastrointestinal tract of chickens. J. Environ. Sci. Health Part A Toxic/Hazardous Subst. Environ. Eng. 2012;47:1665–1671. doi: 10.1080/10934529.2012.687248. PubMed DOI

Garzarella E.U., Navajas-Porras B., Pérez-Burillo S., Ullah H., Esposito C., Santarcangelo C., Hinojosa-Nogueira D., Pastoriza S., Zaccaria V., Xiao J., et al. Evaluating the effects of a standardized polyphenol mixture extracted from poplar-type propolis on healthy and diseased human gut microbiota. Biomed. Pharmacother. 2022;148:112759. doi: 10.1016/j.biopha.2022.112759. PubMed DOI

Dżugan M., Miłek M., Kielar P., Stępień K., Sidor E., Bocian A. SDS-PAGE Protein and HPTLC Polyphenols Profiling as a Promising Tool for Authentication of Goldenrod Honey. Foods. 2022;11:2390. doi: 10.3390/foods11162390. PubMed DOI PMC

Komprda T., Sládková P., Kolářová M., Zorníková G., Sládek Z., Rožnovská D. Effect of probiotic and symbiotic yoghurt consumption on counts of human faecal bacteria and tyramine production. J. Food Nutr. Res. 2013;52:230–238.

Clinical and Laboratory Standards Institute . Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically. 11th ed. Clinical and Laboratory Standards Institute; Wayne, PA, USA: 2018. CLSI standard M7.

Clinical and Laboratory Standards Institute . Methods for Antimicrobial Susceptibility Testing of Anaerobic Bacteria. 9th ed. Clinical and Laboratory Standards Institute; Wayne, PA, USA: 2018. CLSI standard M11.

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...