CoVAMPnet: Comparative Markov State Analysis for Studying Effects of Drug Candidates on Disordered Biomolecules
Status PubMed-not-MEDLINE Language English Country United States Media electronic-ecollection
Document type Journal Article
PubMed
38938816
PubMed Central
PMC11200249
DOI
10.1021/jacsau.4c00182
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
Computational study of the effect of drug candidates on intrinsically disordered biomolecules is challenging due to their vast and complex conformational space. Here, we developed a comparative Markov state analysis (CoVAMPnet) framework to quantify changes in the conformational distribution and dynamics of a disordered biomolecule in the presence and absence of small organic drug candidate molecules. First, molecular dynamics trajectories are generated using enhanced sampling, in the presence and absence of small molecule drug candidates, and ensembles of soft Markov state models (MSMs) are learned for each system using unsupervised machine learning. Second, these ensembles of learned MSMs are aligned across different systems based on a solution to an optimal transport problem. Third, the directional importance of inter-residue distances for the assignment to different conformational states is assessed by a discriminative analysis of aggregated neural network gradients. This final step provides interpretability and biophysical context to the learned MSMs. We applied this novel computational framework to assess the effects of ongoing phase 3 therapeutics tramiprosate (TMP) and its metabolite 3-sulfopropanoic acid (SPA) on the disordered Aβ42 peptide involved in Alzheimer's disease. Based on adaptive sampling molecular dynamics and CoVAMPnet analysis, we observed that both TMP and SPA preserved more structured conformations of Aβ42 by interacting nonspecifically with charged residues. SPA impacted Aβ42 more than TMP, protecting α-helices and suppressing the formation of aggregation-prone β-strands. Experimental biophysical analyses showed only mild effects of TMP/SPA on Aβ42 and activity enhancement by the endogenous metabolization of TMP into SPA. Our data suggest that TMP/SPA may also target biomolecules other than Aβ peptides. The CoVAMPnet method is broadly applicable to study the effects of drug candidates on the conformational behavior of intrinsically disordered biomolecules.
See more in PubMed
Gustavsson A.; Norton N.; Fast T.; Frölich L.; Georges J.; Holzapfel D.; Kirabali T.; Krolak-Salmon P.; Rossini P. M.; Ferretti M. T. Global Estimates on the Number of Persons across the Alzheimer’s Disease Continuum. Alzheimer’s Dementia 2022, 19, 658–670. 10.1002/alz.12694. PubMed DOI
Benilova I.; Karran E.; De Strooper B. The Toxic Aβ Oligomer and Alzheimer’s Disease: An Emperor in Need of Clothes. Nat. Neurosci. 2012, 15 (3), 349–357. 10.1038/nn.3028. PubMed DOI
Karran E.; De Strooper B. The Amyloid Hypothesis in Alzheimer Disease: New Insights from New Therapeutics. Nat. Rev. Drug Discov. 2022, 21 (4), 306–318. 10.1038/s41573-022-00391-w. PubMed DOI
Castellani R. J.; Plascencia-Villa G.; Perry G. The Amyloid Cascade and Alzheimer’s Disease Therapeutics: Theory versus Observation. Lab. Invest. 2019, 99 (7), 958–970. 10.1038/s41374-019-0231-z. PubMed DOI
Matiiv A. B.; Trubitsina N. P.; Matveenko A. G.; Barbitoff Y. A.; Zhouravleva G. A.; Bondarev S. A. Amyloid and Amyloid-Like Aggregates: Diversity and the Term Crisis. Biochemistry (Moscow) 2020, 85 (9), 1011–1034. 10.1134/S0006297920090035. PubMed DOI
Bhattacharya S.; Lin X. Recent Advances in Computational Protocols Addressing Intrinsically Disordered Proteins. Biomolecules 2019, 9 (4), 146.10.3390/biom9040146. PubMed DOI PMC
Saurabh S.; Nadendla K.; Purohit S. S.; Sivakumar P. M.; Cetinel S. Fuzzy Drug Targets: Disordered Proteins in the Drug-Discovery Realm. ACS Omega 2023, 8 (11), 9729–9747. 10.1021/acsomega.2c07708. PubMed DOI PMC
Paul A.; Samantray S.; Anteghini M.; Khaled M.; Strodel B. Thermodynamics and Kinetics of the Amyloid-β Peptide Revealed by Markov State Models Based on MD Data in Agreement with Experiment. Chem. Sci. 2021, 12 (19), 6652–6669. 10.1039/D0SC04657D. PubMed DOI PMC
McGibbon R. T.; Pande V. S. Variational Cross-Validation of Slow Dynamical Modes in Molecular Kinetics. J. Chem. Phys. 2015, 142 (12), 124105.10.1063/1.4916292. PubMed DOI PMC
Spiriti J.; Noé F.; Wong C. F. Simulation of Ligand Dissociation Kinetics from the Protein Kinase PYK2. J. Comput. Chem. 2022, 43 (28), 1911–1922. 10.1002/jcc.26991. PubMed DOI PMC
Dominic A. J. I.; Cao S.; Montoya-Castillo A.; Huang X. Memory Unlocks the Future of Biomolecular Dynamics: Transformative Tools to Uncover Physical Insights Accurately and Efficiently. J. Am. Chem. Soc. 2023, 145 (18), 9916–9927. 10.1021/jacs.3c01095. PubMed DOI
Noé F.; Wu H.; Prinz J.-H.; Plattner N. Projected and Hidden Markov Models for Calculating Kinetics and Metastable States of Complex Molecules. J. Chem. Phys. 2013, 139 (18), 184114.10.1063/1.4828816. PubMed DOI
Suárez E.; Wiewiora R. P.; Wehmeyer C.; Noé F.; Chodera J. D.; Zuckerman D. M. What Markov State Models Can and Cannot Do: Correlation versus Path-Based Observables in Protein-Folding Models. J. Chem. Theory Comput. 2021, 17 (5), 3119–3133. 10.1021/acs.jctc.0c01154. PubMed DOI PMC
Dominic A. J.; Sayer T.; Cao S.; Markland T. E.; Huang X.; Montoya-Castillo A. Building Insightful, Memory-Enriched Models to Capture Long-Time Biochemical Processes from Short-Time Simulations. Proc. Natl. Acad. Sci. U. S. A. 2023, 120 (12), e222104812010.1073/pnas.2221048120. PubMed DOI PMC
Wehmeyer C.; Noé F. Time-Lagged Autoencoders: Deep Learning of Slow Collective Variables for Molecular Kinetics. J. Chem. Phys. 2018, 148 (24), 241703.10.1063/1.5011399. PubMed DOI
Mardt A.; Pasquali L.; Wu H.; Noé F. VAMPnets for Deep Learning of Molecular Kinetics. Nat. Commun. 2018, 9 (1), 5.10.1038/s41467-017-02388-1. PubMed DOI PMC
Löhr T.; Kohlhoff K.; Heller G. T.; Camilloni C.; Vendruscolo M. A Kinetic Ensemble of the Alzheimer’s Aβ Peptide. Nat. Comput. Sci. 2021, 1 (1), 71–78. 10.1038/s43588-020-00003-w. PubMed DOI
Ghorbani M.; Prasad S.; Klauda J. B.; Brooks B. R. GraphVAMPNet, using graph neural networks and variational approach to Markov processes for dynamical modeling of biomolecules. J. Chem. Phys. 2022, 156 (18), 184103.10.1063/5.0085607. PubMed DOI PMC
Liu B.; Xue M.; Qiu Y.; Konovalov K. A.; O’Connor M. S.; Huang X. GraphVAMPnets for Uncovering Slow Collective Variables of Self-Assembly Dynamics. J. Chem. Phys. 2023, 159 (9), 094901.10.1063/5.0158903. PubMed DOI PMC
Mardt A.; Hempel T.; Clementi C.; Noé F. Deep Learning to Decompose Macromolecules into Independent Markovian Domains. Nat. Commun. 2022, 13 (1), 7101.10.1038/s41467-022-34603-z. PubMed DOI PMC
Chen W.; Sidky H.; Ferguson A. L. Nonlinear Discovery of Slow Molecular Modes Using State-Free Reversible VAMPnets. J. Chem. Phys. 2019, 150 (21), 214114.10.1063/1.5092521. PubMed DOI
Kleiman D. E.; Shukla D. Active Learning of the Conformational Ensemble of Proteins Using Maximum Entropy VAMPNets. J. Chem. Theory Comput. 2023, 19 (14), 4377–4388. 10.1021/acs.jctc.3c00040. PubMed DOI
Mardt A.; Noé F. Progress in Deep Markov State Modeling: Coarse Graining and Experimental Data Restraints. J. Chem. Phys. 2021, 155 (21), 214106.10.1063/5.0064668. PubMed DOI
Tolar M.; Abushakra S.; Hey J. A.; Porsteinsson A.; Sabbagh M. Aducanumab, Gantenerumab, BAN2401, and ALZ-801—the First Wave of Amyloid-Targeting Drugs for Alzheimer’s Disease with Potential for near Term Approval. Alzheimer’s Res. Ther. 2020, 12 (1), 95.10.1186/s13195-020-00663-w. PubMed DOI PMC
Gervais F.; Paquette J.; Morissette C.; Krzywkowski P.; Yu M.; Azzi M.; Lacombe D.; Kong X.; Aman A.; Laurin J.; et al. Targeting Soluble Aβ Peptide with Tramiprosate for the Treatment of Brain Amyloidosis. Neurobiol. Aging 2007, 28 (4), 537–547. 10.1016/j.neurobiolaging.2006.02.015. PubMed DOI
Caltagirone C.; Ferrannini L.; Marchionni N.; Nappi G.; Scapagnini G.; Trabucchi M. The Potential Protective Effect of Tramiprosate (Homotaurine) against Alzheimer’s Disease: A Review. Aging: Clin. Exp. Res. 2012, 24 (6), 580–587. 10.1007/BF03654836. PubMed DOI
Zou X.; Himbert S.; Dujardin A.; Juhasz J.; Ros S.; Stöver H. D. H.; Rheinstädter M. C. Curcumin and Homotaurine Suppress Amyloid-Β25–35 Aggregation in Synthetic Brain Membranes. ACS Chem. Neurosci. 2021, 12 (8), 1395–1405. 10.1021/acschemneuro.1c00057. PubMed DOI
Abushakra S.; Porsteinsson A.; Vellas B.; Cummings J.; Gauthier S.; Hey J. A.; Power A.; Hendrix S.; Wang P.; Shen L.; Sampalis J.; Tolar M. Clinical Benefits of Tramiprosate in Alzheimer’s Disease Are Associated with Higher Number of APOE4 Alleles: The “APOE4 Gene-Dose Effect. J. Prev. Alzheimers Dis. 2016, 3 (4), 219–228. 10.14283/jpad.2016.115. PubMed DOI
Tian J.; Dang H.; Wallner M.; Olsen R.; Kaufman D. L. Homotaurine, a Safe Blood-Brain Barrier Permeable GABAA-R-Specific Agonist, Ameliorates Disease in Mouse Models of Multiple Sclerosis. Sci. Rep. 2018, 8 (1), 16555.10.1038/s41598-018-32733-3. PubMed DOI PMC
Manzano S.; Agüera L.; Aguilar M.; Olazarán J. A Review on Tramiprosate (Homotaurine) in Alzheimer’s Disease and Other Neurocognitive Disorders. Front. Neurol. 2020, 11, 614.10.3389/fneur.2020.00614. PubMed DOI PMC
Hey J. A.; Yu J. Y.; Versavel M.; Abushakra S.; Kocis P.; Power A.; Kaplan P. L.; Amedio J.; Tolar M. Clinical Pharmacokinetics and Safety of ALZ-801, a Novel Prodrug of Tramiprosate in Development for the Treatment of Alzheimer’s Disease. Clin. Pharmacokinet. 2018, 57 (3), 315–333. 10.1007/s40262-017-0608-3. PubMed DOI PMC
A Phase 3, Multicenter, Randomized, Double-Blind, Placebo-Controlled Study of the Efficacy, Safety and Biomarker Effects of ALZ-801 in Subjects With Early Alzheimer’s Disease and APOE4/4 Genotype, ClinicalTrials.gov ID; Clinical trial registration NCT04770220; https://clinicaltrials.gov/ct2/show/NCT04770220 (accessed 2022–07–21).
Kocis P.; Tolar M.; Yu J.; Sinko W.; Ray S.; Blennow K.; Fillit H.; Hey J. A. Elucidating the Aβ42 Anti-Aggregation Mechanism of Action of Tramiprosate in Alzheimer’s Disease: Integrating Molecular Analytical Methods, Pharmacokinetic and Clinical Data. CNS Drugs 2017, 31 (6), 495–509. 10.1007/s40263-017-0434-z. PubMed DOI PMC
Hey J. A.; Kocis P.; Hort J.; Abushakra S.; Power A.; Vyhnálek M.; Yu J. Y.; Tolar M. Discovery and Identification of an Endogenous Metabolite of Tramiprosate and Its Prodrug ALZ-801 That Inhibits Beta Amyloid Oligomer Formation in the Human Brain. CNS Drugs 2018, 32 (9), 849–861. 10.1007/s40263-018-0554-0. PubMed DOI PMC
Liang C.; Savinov S. N.; Fejzo J.; Eyles S. J.; Chen J. Modulation of Amyloid-Β42 Conformation by Small Molecules Through Nonspecific Binding. J. Chem. Theory Comput. 2019, 15 (10), 5169–5174. 10.1021/acs.jctc.9b00599. PubMed DOI PMC
Hanwell M. D.; Curtis D. E.; Lonie D. C.; Vandermeersch T.; Zurek E.; Hutchison G. R. Avogadro: An Advanced Semantic Chemical Editor, Visualization, and Analysis Platform. J. Cheminf. 2012, 4 (1), 17.10.1186/1758-2946-4-17. PubMed DOI PMC
Frisch M. J.; Trucks G. W.; Schlegel H. B.; Scuseria G. E.; Robb M. A.; Cheeseman J. R.; Scalmani G.; Barone V.; Mennucci B.; Petersson G. A., et al.Gaussian 09. In Revision E.01, Gaussian, Inc., 2009.
Case D. A.; Betz R. M.; Cerutti D. S.; Cheatham T. E. III; Darden T. A.; Duke R. E.; Giese T. J.; Gohlke H.; Goetz A. W.; Homeyer N., et al.; AMBER 16, University of California, San Francisco, 2016.
Rose P. W.; Bi C.; Bluhm W. F.; Christie C. H.; Dimitropoulos D.; Dutta S.; Green R. K.; Goodsell D. S.; Prlić A.; Quesada M.; et al. The RCSB Protein Data Bank: New Resources for Research and Education. Nucleic Acids Res. 2012, 41 (D1), D475–D482. 10.1093/nar/gks1200. PubMed DOI PMC
Bas D. C.; Rogers D. M.; Jensen J. H. Very fast prediction and rationalization of pKa values for protein–ligand complexes. Proteins: Struct., Funct., Bioinf. 2008, 73 (3), 765–783. 10.1002/prot.22102. PubMed DOI
Doerr S.; Harvey M. J.; Noé F.; De Fabritiis G. HTMD: High-Throughput Molecular Dynamics for Molecular Discovery. J. Chem. Theory Comput. 2016, 12 (4), 1845–1852. 10.1021/acs.jctc.6b00049. PubMed DOI
Huang J.; Rauscher S.; Nawrocki G.; Ran T.; Feig M.; de Groot B. L.; Grubmüller H.; MacKerell A. D. CHARMM36m: An Improved Force Field for Folded and Intrinsically Disordered Proteins. Nat. Methods 2017, 14 (1), 71–73. 10.1038/nmeth.4067. PubMed DOI PMC
Swails J.; ParmEd, GitHub, Inc, 2010. https://github.com/ParmEd/ParmEd. (accessed 2018–03–08).
Roe D. R.; Cheatham T. E. PTRAJ and CPPTRAJ: Software for Processing and Analysis of Molecular Dynamics Trajectory Data. J. Chem. Theory Comput. 2013, 9 (7), 3084–3095. 10.1021/ct400341p. PubMed DOI
Aqvist J.; Medina C.; Samuelsson J. E. A New Method for Predicting Binding Affinity in Computer-Aided Drug Design. Protein Eng. 1994, 7 (3), 385–391. 10.1093/protein/7.3.385. PubMed DOI
Kabsch W.; Sander C. Dictionary of Protein Secondary Structure: Pattern Recognition of Hydrogen-Bonded and Geometrical Features. Biopolymers 1983, 22 (12), 2577–2637. 10.1002/bip.360221211. PubMed DOI
Miller B. R.; McGee T. D.; Swails J. M.; Homeyer N.; Gohlke H.; Roitberg A. E. MMPBSA.Py: An Efficient Program for End-State Free Energy Calculations. J. Chem. Theory Comput. 2012, 8, 3314–3321. 10.1021/ct300418h. PubMed DOI
Genheden S.; Ryde U. The MM/PBSA and MM/GBSA Methods to Estimate Ligand-Binding Affinities. Expert Opin. Drug Discovery 2015, 10 (5), 449–461. 10.1517/17460441.2015.1032936. PubMed DOI PMC
Wu H.; Noé F. Variational Approach for Learning Markov Processes from Time Series Data. J. Nonlinear Sci. 2020, 30 (1), 23–66. 10.1007/s00332-019-09567-y. DOI
Mardt A.; Pasquali L.; Noé F.; Wu H.. Deep Learning Markov and Koopman Models with Physical Constraints. In Proceedings of The First Mathematical and Scientific Machine Learning Conference; PMLR, 2020; pp. 451–475..
Klambauer G.; Unterthiner T.; Mayr A.; Hochreiter S.; Self-Normalizing Neural Networks. In Advances in Neural Information Processing Systems, Curran Associates, Inc, 2017, Vol. 30.
MacQueen J.Some Methods for Classification and Analysis of Multivariate Observations Proceedings of the Fifth Berkeley Symposium On Mathematical Statistics And Probability, Volume 1: Statistics Le Cam L. M.; Neyman J.. Project Euclid; 1967, 5; 281–298..
Bonneel N.; van de Panne M.; Paris S.; Heidrich W. Displacement Interpolation Using Lagrangian Mass Transport. ACM Trans. Graph. 2011, 30 (6), 1–12. 10.1145/2070781.2024192. DOI
Kuhn H. W. The Hungarian Method for the Assignment Problem. Naval Res. Logistics Quarterly 1955, 2 (1–2), 83–97. 10.1002/nav.3800020109. DOI
Fong R.; Vedaldi A.. Explanations for Attributing Deep Neural Network Predictions. In Explainable AI: Interpreting, Explaining and Visualizing Deep Learning. In Lecture Notes in Computer Science, Samek W.; Montavon G.; Vedaldi A.; Hansen L. K.; Müller K.-R.; Springer International Publishing: Cham, 2019; pp. 149–167.. DOI: 10.1007/978-3-030-28954-6_8. DOI
Simonyan K.; Vedaldi A.; Zisserman A.. Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps, arXiv 201410.48550/arXiv.1312.6034. DOI
Cohen S. I. A.; Linse S.; Luheshi L. M.; Hellstrand E.; White D. A.; Rajah L.; Otzen D. E.; Vendruscolo M.; Dobson C. M.; Knowles T. P. J. Proliferation of Amyloid-Β42 Aggregates Occurs through a Secondary Nucleation Mechanism. Proc. Natl. Acad. Sci. U. S. A. 2013, 110 (24), 9758–9763. 10.1073/pnas.1218402110. PubMed DOI PMC
Arosio P.; Knowles T. P. J.; Linse S. On the Lag Phase in Amyloid Fibril Formation. Phys. Chem. Chem. Phys. 2015, 17 (12), 7606–7618. 10.1039/C4CP05563B. PubMed DOI PMC
Tomaselli S.; Esposito V.; Vangone P.; van Nuland N. A. J.; Bonvin A. M. J. J.; Guerrini R.; Tancredi T.; Temussi P. A.; Picone D. The α-to-β Conformational Transition of Alzheimer’s Aβ-(1–42) Peptide in Aqueous Media Is Reversible: A Step by Step Conformational Analysis Suggests the Location of β Conformation Seeding. ChemBiochem 2006, 7 (2), 257–267. 10.1002/cbic.200500223. PubMed DOI
Shamsi Z.; Moffett A. S.; Shukla D. Enhanced Unbiased Sampling of Protein Dynamics Using Evolutionary Coupling Information. Sci. Rep. 2017, 7 (1), 12700.10.1038/s41598-017-12874-7. PubMed DOI PMC
Zimmerman M. I.; Porter J. R.; Sun X.; Silva R. R.; Bowman G. R. Choice of Adaptive Sampling Strategy Impacts State Discovery, Transition Probabilities, and the Apparent Mechanism of Conformational Changes. J. Chem. Theory Comput. 2018, 14 (11), 5459–5475. 10.1021/acs.jctc.8b00500. PubMed DOI PMC
Betz R. M.; Dror R. O. How Effectively Can Adaptive Sampling Methods Capture Spontaneous Ligand Binding?. J. Chem. Theory Comput. 2019, 15 (3), 2053–2063. 10.1021/acs.jctc.8b00913. PubMed DOI PMC
Kleiman D. E.; Nadeem H.; Shukla D. Adaptive Sampling Methods for Molecular Dynamics in the Era of Machine Learning. J. Phys. Chem. B 2023, 127 (50), 10669–10681. 10.1021/acs.jpcb.3c04843. PubMed DOI
Man V. H.; He X.; Derreumaux P.; Ji B.; Xie X.-Q.; Nguyen P. H.; Wang J. Effects of All-Atom Molecular Mechanics Force Fields on Amyloid Peptide Assembly: The Case of Aβ16–22 Dimer. J. Chem. Theory Comput. 2019, 15 (2), 1440–1452. 10.1021/acs.jctc.8b01107. PubMed DOI PMC
Maier J. A.; Martinez C.; Kasavajhala K.; Wickstrom L.; Hauser K. E.; Simmerling C. ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from ff99SB. J. Chem. Theory Comput. 2015, 11 (8), 3696–3713. 10.1021/acs.jctc.5b00255. PubMed DOI PMC
Harada T.; Kuroda R. CD Measurements of β-Amyloid (1–40) and (1–42) in the Condensed Phase. Biopolymers 2011, 95 (2), 127–134. 10.1002/bip.21543. PubMed DOI
Löhr T.; Kohlhoff K.; Heller G. T.; Camilloni C.; Vendruscolo M. A Small Molecule Stabilizes the Disordered Native State of the Alzheimer’s Aβ Peptide. ACS Chem. Neurosci. 2022, 13 (12), 1738–1745. 10.1021/acschemneuro.2c00116. PubMed DOI PMC
Reddy G.; Straub J. E.; Thirumalai D. Influence of Preformed Asp23-Lys28 Salt Bridge on the Conformational Fluctuations of Monomers and Dimers of Aβ Peptides with Implications for Rates of Fibril Formation. J. Phys. Chem. B 2009, 113 (4), 1162–1172. 10.1021/jp808914c. PubMed DOI PMC
Chandra B.; Bhowmik D.; Maity B. K.; Mote K. R.; Dhara D.; Venkatramani R.; Maiti S.; Madhu P. K. Major Reaction Coordinates Linking Transient Amyloid-β Oligomers to Fibrils Measured at Atomic Level. Biophys. J. 2017, 113 (4), 805–816. 10.1016/j.bpj.2017.06.068. PubMed DOI PMC
Nemergut M.; Marques S. M.; Uhrik L.; Vanova T.; Nezvedova M.; Gadara D. C.; Jha D.; Tulis J.; Novakova V.; Planas-Iglesias J.; et al. Domino-like Effect of C112R Mutation on ApoE4 Aggregation and Its Reduction by Alzheimer’s Disease Drug Candidate. Mol. Neurodegener. 2023, 18 (1), 38.10.1186/s13024-023-00620-9. PubMed DOI PMC
Walsh D. M.; Thulin E.; Minogue A. M.; Gustavsson N.; Pang E.; Teplow D. B.; Linse S. A Facile Method for Expression and Purification of the Alzheimer’s Disease-Associated Amyloid Beta-Peptide. FEBS J. 2009, 276 (5), 1266–1281. 10.1111/j.1742-4658.2008.06862.x. PubMed DOI PMC
Thacker D.; Sanagavarapu K.; Frohm B.; Meisl G.; Knowles T. P. J.; Linse S. The Role of Fibril Structure and Surface Hydrophobicity in Secondary Nucleation of Amyloid Fibrils. Proc. Natl. Acad. Sci. U. S. A. 2020, 117 (41), 25272–25283. 10.1073/pnas.2002956117. PubMed DOI PMC
Yang H.; Yang S.; Kong J.; Dong A.; Yu S. Obtaining Information about Protein Secondary Structures in Aqueous Solution Using Fourier Transform IR Spectroscopy. Nat. Protoc. 2015, 10 (3), 382–396. 10.1038/nprot.2015.024. PubMed DOI
Hafsa N. E.; Arndt D.; Wishart D. S. CSI 3.0: A Web Server for Identifying Secondary and Super-Secondary Structure in Proteins Using NMR Chemical Shifts. Nucleic Acids Res. 2015, 43 (W1), W370–W377. 10.1093/nar/gkv494. PubMed DOI PMC
Borcherds W. M.; Daughdrill G. W. Using NMR Chemical Shifts to Determine Residue-Specific Secondary Structure Populations for Intrinsically Disordered Proteins. Methods Enzymol. 2018, 611, 101–136. 10.1016/bs.mie.2018.09.011. PubMed DOI PMC
Schumann F. H.; Riepl H.; Maurer T.; Gronwald W.; Neidig K.-P.; Kalbitzer H. R. Combined Chemical Shift Changes and Amino Acid Specific Chemical Shift Mapping of Protein–Protein Interactions. J. Biomol. NMR 2007, 39 (4), 275–289. 10.1007/s10858-007-9197-z. PubMed DOI
Heller G. T.; Aprile F. A.; Michaels T. C. T.; Limbocker R.; Perni M.; Ruggeri F. S.; Mannini B.; Löhr T.; Bonomi M.; Camilloni C.; et al. Small-Molecule Sequestration of Amyloid-β as a Drug Discovery Strategy for Alzheimer’s Disease. Sci. Adv. 2020, 6 (45), eabb592410.1126/sciadv.abb5924. PubMed DOI PMC
Habchi J.; Arosio P.; Perni M.; Costa A. R.; Yagi-Utsumi M.; Joshi P.; Chia S.; Cohen S. I. A.; Müller M. B. D.; Linse S.; et al. An Anticancer Drug Suppresses the Primary Nucleation Reaction That Initiates the Production of the Toxic Aβ42 Aggregates Linked with Alzheimer’s Disease. Sci. Adv. 2016, 2 (2), e150124410.1126/sciadv.1501244. PubMed DOI PMC
Granata D.; Baftizadeh F.; Habchi J.; Galvagnion C.; De Simone A.; Camilloni C.; Laio A.; Vendruscolo M. The Inverted Free Energy Landscape of an Intrinsically Disordered Peptide by Simulations and Experiments. Sci. Rep. 2015, 5 (1), 15449.10.1038/srep15449. PubMed DOI PMC
Chong S.-H.; Ham S. Folding Free Energy Landscape of Ordered and Intrinsically Disordered Proteins. Sci. Rep. 2019, 9 (1), 14927.10.1038/s41598-019-50825-6. PubMed DOI PMC
Saravanan K. M.; Zhang H.; Zhang H.; Xi W.; Wei Y. On the Conformational Dynamics of β-Amyloid Forming Peptides: A Computational Perspective. Front. Bioeng. Biotechnol. 2020, 8, 532.10.3389/fbioe.2020.00532. PubMed DOI PMC
Grasso G.; Danani A. Molecular Simulations of Amyloid Beta Assemblies. Adv. Phys.: x 2020, 5 (1), 1770627.10.1080/23746149.2020.1770627. DOI
Haass C.; Kaether C.; Thinakaran G.; Sisodia S. Trafficking and Proteolytic Processing of APP. Cold Spring Harbor Perspect. Med. 2012, 2 (5), a006270.10.1101/cshperspect.a006270. PubMed DOI PMC
Zhou M.; Wen H.; Lei H.; Zhang T. Molecular Dynamics Study of Conformation Transition from Helix to Sheet of Aβ42 Peptide. J. Mol. Graphics Modell. 2021, 109, 108027.10.1016/j.jmgm.2021.108027. PubMed DOI
Shuaib S.; Goyal B. Scrutiny of the Mechanism of Small Molecule Inhibitor Preventing Conformational Transition of Amyloid-Β42 Monomer: Insights from Molecular Dynamics Simulations. J. Biomol. Struct. Dyn. 2018, 36 (3), 663–678. 10.1080/07391102.2017.1291363. PubMed DOI
Liu F.; Ma Z.; Sang J.; Lu F. Edaravone Inhibits the Conformational Transition of Amyloid-Β42: Insights from Molecular Dynamics Simulations. J. Biomol. Struct. Dyn. 2020, 38 (8), 2377–2388. 10.1080/07391102.2019.1632225. PubMed DOI
Narang S. S.; Goyal D.; Goyal B. Inhibition of Alzheimer’s Amyloid-Β42 Peptide Aggregation by a Bi-Functional Bis-Tryptoline Triazole: Key Insights from Molecular Dynamics Simulations. J. Biomol. Struct. Dyn. 2020, 38 (6), 1598–1611. 10.1080/07391102.2019.1614093. PubMed DOI
Cao Y.; Jiang X.; Han W. Self-Assembly Pathways of β-Sheet-Rich Amyloid-β(1–40) Dimers: Markov State Model Analysis on Millisecond Hybrid-Resolution Simulations. J. Chem. Theory Comput. 2017, 13 (11), 5731–5744. 10.1021/acs.jctc.7b00803. PubMed DOI
Rojas A. V.; Liwo A.; Scheraga H. A. A Study of the α-Helical Intermediate Preceding the Aggregation of the Amino-Terminal Fragment of the β Amyloid Peptide (Aβ1–28). J. Phys. Chem. B 2011, 115 (44), 12978–12983. 10.1021/jp2050993. PubMed DOI PMC
Tarasoff-Conway J. M.; Carare R. O.; Osorio R. S.; Glodzik L.; Butler T.; Fieremans E.; Axel L.; Rusinek H.; Nicholson C.; Zlokovic B. V.; et al. Clearance Systems in the Brain-Implications for Alzheimer Disease. Nat. Rev. Neurol. 2015, 11 (8), 457–470. 10.1038/nrneurol.2015.119. PubMed DOI PMC
Patterson B. W.; Elbert D. L.; Mawuenyega K. G.; Kasten T.; Ovod V.; Ma S.; Xiong C.; Chott R.; Yarasheski K.; Sigurdson W.; et al. Age and Amyloid Effects on Human Central Nervous System Amyloid-Beta Kinetics. Ann. Neurol. 2015, 78 (3), 439–453. 10.1002/ana.24454. PubMed DOI PMC
Yamazaki Y.; Zhao N.; Caulfield T. R.; Liu C.-C.; Bu G. Apolipoprotein E and Alzheimer Disease: Pathobiology and Targeting Strategies. Nat. Rev. Neurol. 2019, 15 (9), 501–518. 10.1038/s41582-019-0228-7. PubMed DOI PMC
Bye J. W.; Falconer R. J. Thermal Stability of Lysozyme as a Function of Ion Concentration: A Reappraisal of the Relationship between the Hofmeister Series and Protein Stability. Protein Sci. 2013, 22 (11), 1563–1570. 10.1002/pro.2355. PubMed DOI PMC
Martens Y. A.; Zhao N.; Liu C.-C.; Kanekiyo T.; Yang A. J.; Goate A. M.; Holtzman D. M.; Bu G. ApoE Cascade Hypothesis in the Pathogenesis of Alzheimer’s Disease and Related Dementias. Neuron 2022, 110 (8), 1304–1317. 10.1016/j.neuron.2022.03.004. PubMed DOI PMC
Chai A. B.; Lam H. H. J.; Kockx M.; Gelissen I. C. Apolipoprotein E Isoform-Dependent Effects on the Processing of Alzheimer’s Amyloid-β. Biochim. Biophys. Acta, Mol. Cell Biol. Lipids 2021, 1866 (9), 158980.10.1016/j.bbalip.2021.158980. PubMed DOI
Tijms B. M.; Vromen E. M.; Mjaavatten O.; Holstege H.; Reus L. M.; van der Lee S.; Wesenhagen K. E. J.; Lorenzini L.; Vermunt L.; Venkatraghavan V.; et al. Cerebrospinal Fluid Proteomics in Patients with Alzheimer’s Disease Reveals Five Molecular Subtypes with Distinct Genetic Risk Profiles. Nat. Aging 2024, 4 (1), 33–47. 10.1038/s43587-023-00550-7. PubMed DOI PMC