Genes divided according to the relative position of the longest intron show increased representation in different KEGG pathways
Language English Country England, Great Britain Media electronic
Document type Journal Article
PubMed
38943073
PubMed Central
PMC11214234
DOI
10.1186/s12864-024-10558-x
PII: 10.1186/s12864-024-10558-x
Knihovny.cz E-resources
- Keywords
- Eukaryotes, Gene function, Gene structure, Genome, Longest intron, Ribosome biogenesis, Spliceosome,
- MeSH
- Arabidopsis genetics MeSH
- Introns * genetics MeSH
- Humans MeSH
- Spliceosomes genetics metabolism MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
Despite the fact that introns mean an energy and time burden for eukaryotic cells, they play an irreplaceable role in the diversification and regulation of protein production. As a common feature of eukaryotic genomes, it has been reported that in protein-coding genes, the longest intron is usually one of the first introns. The goal of our work was to find a possible difference in the biological function of genes that fulfill this common feature compared to genes that do not. Data on the lengths of all introns in genes were extracted from the genomes of six vertebrates (human, mouse, koala, chicken, zebrafish and fugu) and two other model organisms (nematode worm and arabidopsis). We showed that more than 40% of protein-coding genes have the relative position of the longest intron located in the second or third tertile of all introns. Genes divided according to the relative position of the longest intron were found to be significantly increased in different KEGG pathways. Genes with the longest intron in the first tertile predominate in a range of pathways for amino acid and lipid metabolism, various signaling, cell junctions or ABC transporters. Genes with the longest intron in the second or third tertile show increased representation in pathways associated with the formation and function of the spliceosome and ribosomes. In the two groups of genes defined in this way, we further demonstrated the difference in the length of the longest introns and the distribution of their absolute positions. We also pointed out other characteristics, namely the positive correlation between the length of the longest intron and the sum of the lengths of all other introns in the gene and the preservation of the exact same absolute and relative position of the longest intron between orthologous genes.
See more in PubMed
William Roy S, Gilbert W. The evolution of spliceosomal introns: patterns, puzzles and progress. Nat Rev Genet. 2006;7:211–221. doi: 10.1038/nrg1807. PubMed DOI
Hubé F, Francastel C. Mammalian introns: when the junk generates molecular diversity. IJMS. 2015;16:4429–4452. doi: 10.3390/ijms16034429. PubMed DOI PMC
Gehring NH, Roignant J-Y. Anything but ordinary – emerging splicing mechanisms in eukaryotic gene regulation. Trends Genet. 2021;37:355–372. doi: 10.1016/j.tig.2020.10.008. PubMed DOI
Irimia M, Roy SW. Origin of spliceosomal introns and alternative splicing. Cold Spring Harb Perspect Biol. 2014;6:a016071–a016071. doi: 10.1101/cshperspect.a016071. PubMed DOI PMC
Girardini KN, Olthof AM, Kanadia RN. Introns: the “dark matter” of the eukaryotic genome. Front Genet. 2023;14:1150212. doi: 10.3389/fgene.2023.1150212. PubMed DOI PMC
Jeffares DC, Mourier T, Penny D. The biology of intron gain and loss. Trends Genet. 2006;22:16–22. doi: 10.1016/j.tig.2005.10.006. PubMed DOI
Koonin EV. The origin of introns and their role in eukaryogenesis: a compromise solution to the introns-early versus introns-late debate? Biol Direct. 2006;1:22. doi: 10.1186/1745-6150-1-22. PubMed DOI PMC
Rogozin IB, Carmel L, Csuros M, Koonin EV. Origin and evolution of spliceosomal introns. Biol Direct. 2012;7:11. doi: 10.1186/1745-6150-7-11. PubMed DOI PMC
Müller F, Escobar L, Xu F, Węgrzyn E, Nainytė M, Amatov T, et al. A prebiotically plausible scenario of an RNA–peptide world. Nature. 2022;605:279–284. doi: 10.1038/s41586-022-04676-3. PubMed DOI PMC
Robertson MP, Joyce GF. The origins of the RNA world. Cold Spring Harb Perspect Biol. 2012;4:a003608–a003608. doi: 10.1101/cshperspect.a003608. PubMed DOI PMC
Kupfer DM, Drabenstot SD, Buchanan KL, Lai H, Zhu H, Dyer DW, et al. Introns and splicing elements of five diverse fungi. Eukaryot Cell. 2004;3:1088–1100. doi: 10.1128/EC.3.5.1088-1100.2004. PubMed DOI PMC
Francis WR, Wörheide G. Similar ratios of introns to intergenic sequence across animal genomes. Genome Biol Evol. 2017;9:1582–1598. doi: 10.1093/gbe/evx103. PubMed DOI PMC
Bradnam KR, Korf I. Longer first introns are a general property of eukaryotic gene structure. PLoS ONE. 2008;3:e3093. doi: 10.1371/journal.pone.0003093. PubMed DOI PMC
Jo S-S, Choi SS. Analysis of the functional relevance of epigenetic chromatin marks in the first intron associated with specific gene expression patterns. Genome Biol Evol. 2019;11:786–797. doi: 10.1093/gbe/evz033. PubMed DOI PMC
Park SG, Hannenhalli S, Choi SS. Conservation in first introns is positively associated with the number of exons within genes and the presence of regulatory epigenetic signals. BMC Genomics. 2014;15:526. doi: 10.1186/1471-2164-15-526. PubMed DOI PMC
Rose AB. Introns as gene regulators: a brick on the accelerator. Front Genet. 2019;9:672. doi: 10.3389/fgene.2018.00672. PubMed DOI PMC
Dvorak P, Hanicinec V, Soucek P. The position of the longest intron is related to biological functions in some human genes. Front Genet. 2023;13:1085139. doi: 10.3389/fgene.2022.1085139. PubMed DOI PMC
Cunningham F, Allen JE, Allen J, Alvarez-Jarreta J, Amode MR, Armean IM, et al. Ensembl 2022. Nucleic Acids Res. 2022;50:D988–D995. doi: 10.1093/nar/gkab1049. PubMed DOI PMC
Morales J, Pujar S, Loveland JE, Astashyn A, Bennett R, Berry A, et al. A joint NCBI and EMBL-EBI transcript set for clinical genomics and research. Nature. 2022;604:310–315. doi: 10.1038/s41586-022-04558-8. PubMed DOI PMC
Raudvere U, Kolberg L, Kuzmin I, Arak T, Adler P, Peterson H, et al. g:Profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update) Nucleic Acids Res. 2019;47:W191–W198. doi: 10.1093/nar/gkz369. PubMed DOI PMC
Ge SX, Jung D, Yao R. ShinyGO: a graphical gene-set enrichment tool for animals and plants. Bioinformatics. 2020;36:2628–2629. doi: 10.1093/bioinformatics/btz931. PubMed DOI PMC
Reimand J, Isserlin R, Voisin V, Kucera M, Tannus-Lopes C, Rostamianfar A, et al. Pathway enrichment analysis and visualization of omics data using g:Profiler, GSEA. Cytoscape and EnrichmentMap. Nat Protoc. 2019;14:482–517. doi: 10.1038/s41596-018-0103-9. PubMed DOI PMC
Carbon S, Ireland A, Mungall CJ, Shu S, Marshall B, Lewis S, et al. AmiGO: online access to ontology and annotation data. Bioinformatics. 2009;25:288–289. doi: 10.1093/bioinformatics/btn615. PubMed DOI PMC
Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene ontology: tool for the unification of biology. Nat Genet. 2000;25:25–29. doi: 10.1038/75556. PubMed DOI PMC
Jia A, Xu L, Wang Y. Venn diagrams in bioinformatics. Brief Bioinform. 2021;22:bbab108. doi: 10.1093/bib/bbab108. PubMed DOI
Supek F, Bošnjak M, Škunca N, Šmuc T. REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS ONE. 2011;6:e21800. doi: 10.1371/journal.pone.0021800. PubMed DOI PMC
Kanehisa M, Furumichi M, Sato Y, Ishiguro-Watanabe M, Tanabe M. KEGG: integrating viruses and cellular organisms. Nucleic Acids Res. 2021;49:D545–D551. doi: 10.1093/nar/gkaa970. PubMed DOI PMC
Luo W, Pant G, Bhavnasi YK, Blanchard SG, Brouwer C. Pathview Web: user friendly pathway visualization and data integration. Nucleic Acids Res. 2017;45:W501–W508. doi: 10.1093/nar/gkx372. PubMed DOI PMC
Shin S-H, Choi SS. Lengths of coding and noncoding regions of a gene correlate with gene essentiality and rates of evolution. Genes Genom. 2015;37:365–374. doi: 10.1007/s13258-015-0265-6. DOI
Majewski J, Ott J. Distribution and characterization of regulatory elements in the human genome. Genome Res. 2002;12:1827–1836. doi: 10.1101/gr.606402. PubMed DOI PMC
Swinburne IA, Miguez DG, Landgraf D, Silver PA. Intron length increases oscillatory periods of gene expression in animal cells. Genes Dev. 2008;22:2342–2346. doi: 10.1101/gad.1696108. PubMed DOI PMC
Burnette JM, Miyamoto-Sato E, Schaub MA, Conklin J, Lopez AJ. Subdivision of large introns in Drosophila by recursive splicing at nonexonic elements. Genetics. 2005;170:661–674. doi: 10.1534/genetics.104.039701. PubMed DOI PMC
Shepard S, McCreary M, Fedorov A. The peculiarities of large intron splicing in animals. PLoS ONE. 2009;4:e7853. doi: 10.1371/journal.pone.0007853. PubMed DOI PMC
Kelly S, Georgomanolis T, Zirkel A, Diermeier S, O’Reilly D, Murphy S, et al. Splicing of many human genes involves sites embedded within introns. Nucleic Acids Res. 2015;43:4721–4732. doi: 10.1093/nar/gkv386. PubMed DOI PMC
Vinogradov AE. Compactness of human housekeeping genes: selection for economy or genomic design? Trends Genet. 2004;20:248–253. doi: 10.1016/j.tig.2004.03.006. PubMed DOI
Jeffares DC, Penkett CJ, Bähler J. Rapidly regulated genes are intron poor. Trends Genet. 2008;24:375–378. doi: 10.1016/j.tig.2008.05.006. PubMed DOI
Heyn P, Kalinka AT, Tomancak P, Neugebauer KM. Introns and gene expression: cellular constraints, transcriptional regulation, and evolutionary consequences. Bioessays. 2015;37:148–154. doi: 10.1002/bies.201400138. PubMed DOI PMC
Schonfeld E, Vendrow E, Vendrow J, Schonfeld E. On the relation of gene essentiality to intron structure: a computational and deep learning approach. Life Sci Alliance. 2021;4:e202000951. doi: 10.26508/lsa.202000951. PubMed DOI PMC
Gilbert W. The RNA world. Nature. 1986;319:618. doi: 10.1038/319618a0. DOI
Fedorov A, Fedorova L. Introns: mighty elements from the RNA world. J Mol Evol. 2004;59:718–721. doi: 10.1007/s00239-004-2660-5. PubMed DOI
Penny D, Hoeppner MP, Poole AM, Jeffares DC. An overview of the introns-first theory. J Mol Evol. 2009;69:527–540. doi: 10.1007/s00239-009-9279-5. PubMed DOI
Roy SW, Fedorov A, Gilbert W. The signal of ancient introns is obscured by intron density and homolog number. Proc Natl Acad Sci USA. 2002;99:15513–15517. doi: 10.1073/pnas.242600199. PubMed DOI PMC
Kandul NP, Noor MA. Large introns in relation to alternative splicing and gene evolution: a case study of Drosophila bruno-3. BMC Genet. 2009;10:67. doi: 10.1186/1471-2156-10-67. PubMed DOI PMC