The position of the longest intron is related to biological functions in some human genes
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
36712854
PubMed Central
PMC9875286
DOI
10.3389/fgene.2022.1085139
PII: 1085139
Knihovny.cz E-zdroje
- Klíčová slova
- gene expression, gene function, gene structure, human genome, introns, longest intron,
- Publikační typ
- časopisecké články MeSH
The evidence that introns can influence different levels of transfer of genetic information between DNA and the final product is increasing. Longer first introns were found to be a general property of eukaryotic gene structure and shown to contain a higher fraction of conserved sequence and different functional elements. Our work brings more precise information about the position of the longest introns in human protein-coding genes and possible connection with biological function and gene expression. According to our results, the position of the longest intron can be localized to the first third of introns in 64%, the second third in 19%, and the third in 17%, with notable peaks at the middle and last introns of approximately 5% and 6%, respectively. The median lengths of the longest introns decrease with increasing distance from the start of the gene from approximately 15,000 to 5,000 bp. We have shown that the position of the longest intron is in some cases linked to the biological function of the given gene. For example, DNA repair genes have the longest intron more often in the second or third. In the distribution of gene expression according to the position of the longest intron, tissue-specific profiles can be traced with the highest expression usually at the absolute positions of intron 1 and 2. In this work, we present arguments supporting the hypothesis that the position of the longest intron in a gene is another biological factor modulating the transmission of genetic information. The position of the longest intron is related to biological functions in some human genes.
Biomedical Center Faculty of Medicine in Pilsen Charles University Pilsen Czechia
Department of Biology Faculty of Medicine in Pilsen Charles University Pilsen Czechia
Institute of Medical Genetics University Hospital Pilsen Pilsen Czechia
Toxicogenomics Unit National Institute of Public Health Prague Czechia
Zobrazit více v PubMed
Aviña-Padilla K., Ramírez-Rafael J., Herrera-Oropeza G., Muley V., Valdivia D., Díaz-Valenzuela E., et al. (2021). Evolutionary perspective and expression analysis of intronless genes highlight the conservation of their regulatory role. Front. Genet. 12, 654256. 10.3389/fgene.2021.654256 PubMed DOI PMC
Bradnam K., Korf I. (2008). Longer first introns are a general property of eukaryotic gene structure. PLoS ONE 3 (8), e3093. 10.1371/journal.pone.0003093 PubMed DOI PMC
Chorev M., Carmel L. (2012). The function of introns. Front. Genet. 3, 55. 10.3389/fgene.2012.00055 PubMed DOI PMC
Chung B., Simons C., Firth A., Brown C., Hellens R. (2006). Effect of 5'UTR introns on gene expression in Arabidopsis thaliana . BMC Genomics 7 (1), 120. 10.1186/1471-2164-7-120 PubMed DOI PMC
Crane M., Sands B., Battaglia C., Johnson B., Yun S., Kaeberlein M., et al. (2019). In vivo measurements reveal a single 5′-intron is sufficient to increase protein expression level in Caenorhabditis elegans . Sci. Rep. 9 (1), 9192. 10.1038/s41598-019-45517-0 PubMed DOI PMC
Duret L. (2001). Why do genes have introns? Recombination might add a new piece to the puzzle. Trends Genet. 17 (4), 172–175. 10.1016/s0168-9525(01)02236-3 PubMed DOI
Gaffney D., Keightley P. (2006). Genomic selective constraints in murid noncoding DNA. PLoS Genet. 2 (11), e204. 10.1371/journal.pgen.0020204 PubMed DOI PMC
Gorlova O., Fedorov A., Logothetis C., Amos C., Gorlov I. (2014). Genes with a large intronic burden show greater evolutionary conservation on the protein level. BMC Evol. Biol. 14 (1), 50. 10.1186/1471-2148-14-50 PubMed DOI PMC
Grzybowska E. (2012). Human intronless genes: Functional groups, associated diseases, evolution, and mRNA processing in absence of splicing. Biochem. Biophysical Res. Commun. 424 (1), 1–6. 10.1016/j.bbrc.2012.06.092 PubMed DOI
Heyn P., Kalinka A., Tomancak P., Neugebauer K. (2014). Introns and gene expression: Cellular constraints, transcriptional regulation, and evolutionary consequences. BioEssays 37 (2), 148–154. 10.1002/bies.201400138 PubMed DOI PMC
Hong X., Scofield D., Lynch M. (2006). Intron size, abundance, and distribution within untranslated regions of genes. Mol. Biol. Evol. 23 (12), 2392–2404. 10.1093/molbev/msl111 PubMed DOI
Hubé F., Francastel C. (2015). Mammalian introns: When the junk generates molecular diversity. Int. J. Mol. Sci. 16 (3), 4429–4452. 10.3390/ijms16034429 PubMed DOI PMC
Jo S., Choi S. (2019). Analysis of the functional relevance of epigenetic chromatin marks in the first intron associated with specific gene expression patterns. Genome Biol. Evol. 11 (3), 786–797. 10.1093/gbe/evz033 PubMed DOI PMC
Li H., Chen D., Zhang J. (2012). Analysis of intron sequence features associated with transcriptional regulation in human genes. PLoS ONE 7 (10), e46784. 10.1371/journal.pone.0046784 PubMed DOI PMC
Lopes I., Altab G., Raina P., de Magalhães J. (2021). Gene size matters: An analysis of gene length in the human genome. Front. Genet. 12, 559998. 10.3389/fgene.2021.559998 PubMed DOI PMC
Marais G., Nouvellet P., Keightley P., Charlesworth B. (2005). Intron size and exon evolution in Drosophila. Genetics 170 (1), 481–485. 10.1534/genetics.104.037333 PubMed DOI PMC
Morales J., Pujar S., Loveland J. E., Astashyn A., Bennett R., Berry A., et al. (2022). A joint NCBI and EMBL-EBI transcript set for clinical genomics and research. Nature 604 (7905), 310–315. 10.1038/s41586-022-04558-8 PubMed DOI PMC
Nott A., Meislin S., Moore M. (2003). A quantitative analysis of intron effects on mammalian gene expression. RNA 9 (5), 607–617. 10.1261/rna.5250403 PubMed DOI PMC
Park S., Hannenhalli S., Choi S. (2014). Conservation in first introns is positively associated with the number of exons within genes and the presence of regulatory epigenetic signals. BMC Genomics 15 (1), 526. 10.1186/1471-2164-15-526 PubMed DOI PMC
Piovesan A., Antonaros F., Vitale L., Strippoli P., Pelleri M., Caracausi M. (2019). Human protein-coding genes and gene feature statistics in 2019. BMC Res. Notes 12 (1), 315. 10.1186/s13104-019-4343-8 PubMed DOI PMC
Raudvere U., Kolberg L., Kuzmin I., Arak T., Adler P., Peterson H., et al. (2019). g:Profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update). Nucleic Acids Res. 47 (W1), W191–W198. 10.1093/nar/gkz369 PubMed DOI PMC
Rose A., Elfersi T., Parra G., Korf I. (2008). Promoter-proximal introns in Arabidopsis thaliana are enriched in dispersed signals that elevate gene expression. Plant Cell. 20 (3), 543–551. 10.1105/tpc.107.057190 PubMed DOI PMC
Rose A., Emami S., Bradnam K., Korf I. (2011). Evidence for a DNA-based mechanism of intron-mediated enhancement. Front. Plant Sci. 2, 98. 10.3389/fpls.2011.00098 PubMed DOI PMC
Rose A. (2019). Introns as gene regulators: A brick on the accelerator. Front. Genet. 9, 672. 10.3389/fgene.2018.00672 PubMed DOI PMC
Shaul O. (2017). How introns enhance gene expression. Int. J. Biochem. Cell. Biol. 91, 145–155. 10.1016/j.biocel.2017.06.016 PubMed DOI
Vinogradov A. (2006). Genome design” model: Evidence from conserved intronic sequence in human–mouse comparison. Genome Res. 16 (3), 347–354. 10.1101/gr.4318206 PubMed DOI PMC
Zalabák D., Ikeda Y. (2020). First come, first served: Sui generis features of the first intron. Plants 9 (7), 911. 10.3390/plants9070911 PubMed DOI PMC
Zhu L., Zhang Y., Zhang W., Yang S., Chen J., Tian D. (2009). Patterns of exon-intron architecture variation of genes in eukaryotic genomes. BMC Genomics 10 (1), 47. 10.1186/1471-2164-10-47 PubMed DOI PMC