First Come, First Served: Sui Generis Features of the First Intron

. 2020 Jul 19 ; 9 (7) : . [epub] 20200719

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid32707681

Grantová podpora
GACR17-23702S Grantová Agentura České Republiky
GACR 18-23972Y Grantová Agentura České Republiky

Most of the transcribed genes in eukaryotic cells are interrupted by intervening sequences called introns that are co-transcriptionally removed from nascent messenger RNA through the process of splicing. In Arabidopsis, 79% of genes contain introns and more than 60% of intron-containing genes undergo alternative splicing (AS), which ostensibly is considered to increase protein diversity as one of the intrinsic mechanisms for fitness to the varying environment or the internal developmental program. In addition, recent findings have prevailed in terms of overlooked intron functions. Here, we review recent progress in the underlying mechanisms of intron function, in particular by focusing on unique features of the first intron that is located in close proximity to the transcription start site. The distinct deposition of epigenetic marks and nucleosome density on the first intronic DNA sequence, the impact of the first intron on determining the transcription start site and elongation of its own expression (called intron-mediated enhancement, IME), translation control in 5'-UTR, and the new mechanism of the trans-acting function of the first intron in regulating gene expression at the post-transcriptional level are summarized.

Zobrazit více v PubMed

Berget S.M., Moore C., Sharp P.A. Spliced segments at the 5′ terminus of adenovirus 2 late mRNA. Proc. Natl. Acad. Sci. USA. 1977;74:3171–3175. doi: 10.1073/pnas.74.8.3171. PubMed DOI PMC

Chow L.T., Gelinas R.E., Broker T.R., Roberts R.J. An amazing sequence arrangement at the 5′ ends of adenovirus 2 messenger RNA. Cell. 1977;12:1–8. doi: 10.1016/0092-8674(77)90180-5. PubMed DOI

Gilbert W. Why genes in pieces? Nature. 1978;271:501. doi: 10.1038/271501a0. PubMed DOI

Catania F., Lynch M. Where do introns come from? PLoS Biol. 2008;6:2354–2361. doi: 10.1371/journal.pbio.0060283. PubMed DOI PMC

Rogozin I.B., Carmel L., Csuros M., Koonin E.V. Origin and evolution of spliceosomal introns. Biol. Direct. 2012;7:1–28. doi: 10.1186/1745-6150-7-11. PubMed DOI PMC

Irimia M., Roy S.W. Origin of spliceosomal introns and alternative splicing. Cold Spring Harb. Perspect. Biol. 2014;6:a016071. doi: 10.1101/cshperspect.a016071. PubMed DOI PMC

Koonin E.V., Csuros M., Rogozin I.B. Whence genes in pieces: Reconstruction of the exon-intron gene structures of the last eukaryotic common ancestor and other ancestral eukaryotes. Wiley Interdiscip. Rev. RNA. 2013;4:93–105. doi: 10.1002/wrna.1143. PubMed DOI

Csuros M., Rogozin I.B., Koonin E.V. A detailed history of intron-rich eukaryotic ancestors inferred from a global survey of 100 complete genomes. PLoS Comput. Biol. 2011;7:e1002150. doi: 10.1371/journal.pcbi.1002150. PubMed DOI PMC

Braunschweig U., Gueroussov S., Plocik A.M., Graveley B.R., Blencowe B.J. Dynamic integration of splicing within gene regulatory pathways. Cell. 2013;152:1252–1269. doi: 10.1016/j.cell.2013.02.034. PubMed DOI PMC

Barbazuk W.B., Fu Y., McGinnis K.M. Genome-wide analyses of alternative splicing in plants: Opportunities and challenges. Genome Res. 2008;18:1382–1391. doi: 10.1101/gr.053678.106. PubMed DOI

Alló M., Schor I.E., Muñoz M.J., De La Mata M., Agirre E., Valcárcel J., Eyras E., Kornblihtt A.R. Chromatin and alternative splicing. Cold Spring Harb. Symp. Quant. Biol. 2010;75:103–111. doi: 10.1101/sqb.2010.75.023. PubMed DOI

Le Hir H., Nott A., Moore M.J. How introns influence and enhance eukaryotic gene expression. Trends Biochem. Sci. 2003;28:215–220. doi: 10.1016/S0968-0004(03)00052-5. PubMed DOI

Szakonyi D., Duque P. Alternative splicing as a regulator of early plant development. Front. Plant Sci. 2018;9:1–9. doi: 10.3389/fpls.2018.01174. PubMed DOI PMC

Shang X., Cao Y., Ma L. Alternative splicing in plant genes: A means of regulating the environmental fitness of plants. Int. J. Mol. Sci. 2017;18:432. doi: 10.3390/ijms18020432. PubMed DOI PMC

Mastrangelo A.M., Marone D., Laidò G., De Leonardis A.M., De Vita P. Alternative splicing: Enhancing ability to cope with stress via transcriptome plasticity. Plant Sci. 2012;185–186:40–49. doi: 10.1016/j.plantsci.2011.09.006. PubMed DOI

Jabre I., Reddy A.S.N., Kalyna M., Chaudhary S., Khokhar W., Byrne L.J., Wilson C.M., Syed N.H. Does co-transcriptional regulation of alternative splicing mediate plant stress responses? Nucl. Acids Res. 2019;47:2716–2726. doi: 10.1093/nar/gkz121. PubMed DOI PMC

Park S.G., Hannenhalli S., Choi S.S. Conservation in first introns is positively associated with the number of exons within genes and the presence of regulatory epigenetic signals. BMC Genomics. 2014;15:526. doi: 10.1186/1471-2164-15-526. PubMed DOI PMC

Jo S.S., Choi S.S., Hurst L. Analysis of the functional relevance of epigenetic chromatin marks in the first intron associated with specific gene expression patterns. Genome Biol. Evol. 2019;11:786–797. doi: 10.1093/gbe/evz033. PubMed DOI PMC

Zhang X., Bernatavichute Y.V., Cokus S., Pellegrini M., Jacobsen S.E. Genome-wide analysis of mono-, di- and trimethylation of histone H3 lysine 4 in Arabidopsis thaliana. Genome Biol. 2009;10:1–14. doi: 10.1186/gb-2009-10-6-r62. PubMed DOI PMC

Schwartz S., Meshorer E., Ast G. Chromatin organization marks exon-intron structure. Nat. Struct. Mol. Biol. 2009;16:990–995. doi: 10.1038/nsmb.1659. PubMed DOI

Chodavarapu R.K., Feng S., Bernatavichute Y.V., Chen P.Y., Stroud H., Yu Y., Hetzel J.A., Kuo F., Kim J., Cokus S.J., et al. Relationship between nucleosome positioning and DNA methylation. Nature. 2010;466:388–392. doi: 10.1038/nature09147. PubMed DOI PMC

Pass D.A., Sornay E., Marchbank A., Crawford M.R., Paszkiewicz K., Kent N.A., Murray J.A.H. Genome-wide chromatin mapping with size resolution reveals a dynamic sub-nucleosomal landscape in Arabidopsis. PLoS Genet. 2017;13:e1006988. doi: 10.1371/journal.pgen.1006988. PubMed DOI PMC

Deremetz A., Le Roux C., Idir Y., Brousse C., Agorio A., Gy I., Parker J.E., Bouché N. Antagonistic actions of FPA and IBM2 regulate transcript processing from genes containing heterochromatin. Plant Physiol. 2019;180:392–403. doi: 10.1104/pp.18.01106. PubMed DOI PMC

Bieberstein N.I., Oesterreich F.C., Straube K., Neugebauer K.M. First exon length controls active chromatin signatures and transcription. Cell Rep. 2012;2:62–68. doi: 10.1016/j.celrep.2012.05.019. PubMed DOI

Gelfman S., Cohen N., Yearim A., Ast G. DNA-methylation effect on cotranscriptional splicing is dependent on GC architecture of the exon-intron structure. Genome Res. 2013;23:789–799. doi: 10.1101/gr.143503.112. PubMed DOI PMC

Lev Maor G., Yearim A., Ast G. The alternative role of DNA methylation in splicing regulation. Trends Genet. 2015;31:274–280. doi: 10.1016/j.tig.2015.03.002. PubMed DOI

Wong J.J.L., Gao D., Nguyen T.V., Kwok C.T., Van Geldermalsen M., Middleton R., Pinello N., Thoeng A., Nagarajah R., Holst J., et al. Intron retention is regulated by altered MeCP2-mediated splicing factor recruitment. Nat. Commun. 2017;8:1–13. doi: 10.1038/ncomms15134. PubMed DOI PMC

Ullah F., Hamilton M., Reddy A.S.N., Ben-Hur A. Exploring the relationship between intron retention and chromatin accessibility in plants. BMC Genomics. 2018;19:21. doi: 10.1186/s12864-017-4393-z. PubMed DOI PMC

Wang X., Hu L., Wang X., Li N., Xu C., Gong L., Liu B. DNA methylation affects gene alternative splicing in plants: An example from rice. Mol. Plant. 2016;9:305–307. doi: 10.1016/j.molp.2015.09.016. PubMed DOI

Chorev M., Joseph Bekker A., Goldberger J., Carmel L. Identification of introns harboring functional sequence elements through positional conservation. Sci. Rep. 2017;7:1–13. doi: 10.1038/s41598-017-04476-0. PubMed DOI PMC

Hou J., Lu D., Mason A.S., Li B., Xiao M., An S., Fu D. Non-coding RNAs and transposable elements in plant genomes: Emergence, regulatory mechanisms and roles in plant development and stress responses. Planta. 2019;250:23–40. doi: 10.1007/s00425-019-03166-7. PubMed DOI

Espinas N.A., Tu L.N., Furci L., Shimajiri Y., Harukawa Y., Miura S., Takuno S., Saze H. Transcriptional regulation of genes bearing intronic heterochromatin in the rice genome. PLoS Genet. 2020;16:e1008637. doi: 10.1371/journal.pgen.1008637. PubMed DOI PMC

Le T.N., Miyazaki Y., Takuno S., Saze H. Epigenetic regulation of intragenic transposable elements impacts gene transcription in Arabidopsis thaliana. Nucl. Acids Res. 2015;43:3911–3921. doi: 10.1093/nar/gkv258. PubMed DOI PMC

Yan K., Liu P., Wu C.A., Yang G.D., Xu R., Guo Q.H., Huang J.G., Zheng C.C. Stress-induced alternative splicing provides a mechanism for the regulation of microRNA processing in Arabidopsis thaliana. Mol. Cell. 2012;48:521–531. doi: 10.1016/j.molcel.2012.08.032. PubMed DOI

Meng Y., Shao C., Ma X., Wang H. Introns targeted by plant microRNAs: A possible novel mechanism of gene regulation. Rice. 2013;6:1–10. doi: 10.1186/1939-8433-6-8. PubMed DOI PMC

Wang Y., Fan X., Lin F., He G., Terzaghi W., Zhu D., Deng X.W. Arabidopsis noncoding RNA mediates control of photomorphogenesis by red light. Proc. Natl. Acad. Sci. USA. 2014;111:10359–10364. doi: 10.1073/pnas.1409457111. PubMed DOI PMC

Qüesta J.I., Song J., Geraldo N., An H., Dean C. Arabidopsis transcriptional repressor VAL1 triggers Polycomb silencing at FLC during vernalization. Science. 2016;353:485–488. doi: 10.1126/science.aaf7354. PubMed DOI

Churchman L.S., Weissman J.S. Nascent transcript sequencing visualizes transcription at nucleotide resolution. Nature. 2011;469:368–373. doi: 10.1038/nature09652. PubMed DOI PMC

Nojima T., Gomes T., Grosso A.R.F., Kimura H., Dye M.J., Dhir S., Carmo-Fonseca M., Proudfoot N.J. Mammalian NET-seq reveals genome-wide nascent transcription coupled to RNA processing. Cell. 2015;161:526–540. doi: 10.1016/j.cell.2015.03.027. PubMed DOI PMC

Leng X., Ivanov M., Kindgren P., Malik I., Thieffry A., Brodersen P., Sandelin A., Kaplan C.D., Marquardt S. Organismal benefits of transcription speed control at gene boundaries. EMBO Rep. 2020;21:1–16. doi: 10.15252/embr.201949315. PubMed DOI PMC

Godoy Herz M.A., Kornblihtt A.R. Alternative splicing and transcription elongation in plants. Front. Plant Sci. 2019;10:1–5. doi: 10.3389/fpls.2019.00309. PubMed DOI PMC

Fong N., Kim H., Zhou Y., Ji X., Qiu J., Saldi T., Diener K., Jones K., Fu X.D., Bentley D.L. Pre-mRNA splicing is facilitated by an optimal RNA polymerase II elongation rate. Genes Dev. 2014;28:2663–2676. doi: 10.1101/gad.252106.114. PubMed DOI PMC

Dujardin G., Lafaille C., de la Mata M., Marasco L.E., Muñoz M.J., Le Jossic-Corcos C., Corcos L., Kornblihtt A.R. How slow RNA polymerase II elongation favors alternative exon skipping. Mol. Cell. 2014;54:683–690. doi: 10.1016/j.molcel.2014.03.044. PubMed DOI

Zhu J., Liu M., Liu X., Dong Z. RNA polymerase II activity revealed by GRO-seq and pNET-seq in Arabidopsis. Nat. Plants. 2018;4:1112–1123. doi: 10.1038/s41477-018-0280-0. PubMed DOI

Wallace E.W.J., Beggs J.D. Extremely fast and incredibly close: Cotranscriptional splicing in budding yeast. RNA. 2017;23:601–610. doi: 10.1261/rna.060830.117. PubMed DOI PMC

Nojima T., Rebelo K., Gomes T., Grosso A.R., Proudfoot N.J., Carmo-Fonseca M. RNA Polymerase II phosphorylated on CTD serine 5 interacts with the spliceosome during co-transcriptional splicing. Mol. Cell. 2018;72:369–379.e4. doi: 10.1016/j.molcel.2018.09.004. PubMed DOI PMC

Fong N., Saldi T., Sheridan R.M., Cortazar M.A., Bentley D.L. RNA pol II dynamics modulate co-transcriptional chromatin modification, CTD phosphorylation, and transcriptional direction. Mol. Cell. 2017;66:546–557.e3. doi: 10.1016/j.molcel.2017.04.016. PubMed DOI PMC

Jia J., Long Y., Zhang H., Li Z., Liu Z., Zhao Y., Lu D., Jin X., Deng X., Xia R., et al. Post-transcriptional splicing of nascent RNA contributes to widespread intron retention in plants. Nat. Plants. 2020;6:780–788. doi: 10.1038/s41477-020-0688-1. PubMed DOI

Harlen K.M., Churchman L.S. The code and beyond: Transcription regulation by the RNA polymerase II carboxy-terminal domain. Nat. Rev. Mol. Cell Biol. 2017;18:263–273. doi: 10.1038/nrm.2017.10. PubMed DOI

Izaurralde E., Lewis J., McGuigan C., Jankowska M., Darzynkiewicz E., Mattaj I.W. A nuclear cap binding protein complex involved in pre-mRNA splicing. Cell. 1994;78:657–668. doi: 10.1016/0092-8674(94)90530-4. PubMed DOI

Raczynska K.D., Simpson C.G., Ciesiolka A., Szewc L., Lewandowska D., McNicol J., Szweykowska-Kulinska Z., Brown J.W.S., Jarmolowski A. Involvement of the nuclear cap-binding protein complex in alternative splicing in Arabidopsis thaliana. Nucl. Acids Res. 2009;38:265–278. doi: 10.1093/nar/gkp869. PubMed DOI PMC

Laubinger S., Sachsenberg T., Zeller G., Busch W., Lohmann J.U., Rätsch G., Weigel D. Dual roles of the nuclear cap-binding complex and SERRATE in pre-mRNA splicing and microRNA processing in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA. 2008;105:8795–8800. doi: 10.1073/pnas.0802493105. PubMed DOI PMC

Raczynska K.D., Stepien A., Kierzkowski D., Kalak M., Bajczyk M., McNicol J., Simpson C.G., Szweykowska-Kulinska Z., Brown J.W.S., Jarmolowski A. The SERRATE protein is involved in alternative splicing in Arabidopsis thaliana. Nucl. Acids Res. 2014;42:1224–1244. doi: 10.1093/nar/gkt894. PubMed DOI PMC

Bardou F., Ariel F., Simpson C.G., Romero-Barrios N., Laporte P., Balzergue S., Brown J.W.S., Crespi M. Long noncoding RNA modulates alternative splicing regulators in Arabidopsis. Dev. Cell. 2014;30:166–176. doi: 10.1016/j.devcel.2014.06.017. PubMed DOI

Callis J., Fromm M., Walbot V. Introns increase gene expression in cultured maize cells. Genes Dev. 1987;1:1183–1200. doi: 10.1101/gad.1.10.1183. PubMed DOI

Clancy M., Curtis Hannah L. Splicing of the maize Sh1 first intron is essential for enhancement of gene expression, and a T-rich motif increases expression without affecting splicing. Plant Physiol. 2002;130:918–929. doi: 10.1104/pp.008235. PubMed DOI PMC

Core L.J., Waterfall J.J., Lis J.T. Nascent RNA sequencing reveals widespread pausing and divergent initiation at human promoters. Science. 2008;322:1845–1848. doi: 10.1126/science.1162228. PubMed DOI PMC

Wu X., Sharp P.A. Divergent transcription: A driving force for new gene origination? Cell. 2013;155:990–996. doi: 10.1016/j.cell.2013.10.048. PubMed DOI PMC

Mayer A., Di Iulio J., Maleri S., Eser U., Vierstra J., Reynolds A., Sandstrom R., Stamatoyannopoulos J.A., Churchman L.S. Native elongating transcript sequencing reveals human transcriptional activity at nucleotide resolution. Cell. 2015;161:541–554. doi: 10.1016/j.cell.2015.03.010. PubMed DOI PMC

Hetzel J., Duttke S.H., Benner C., Chory J. Nascent RNA sequencing reveals distinct features in plant transcription. Proc. Natl. Acad. Sci. USA. 2016;113:12316–12321. doi: 10.1073/pnas.1603217113. PubMed DOI PMC

Furger A., O’Sullivan J.M., Binnie A., Lee B.A., Proudfoot N.J. Promoter proximal splice sites enhance transcription. Genes Dev. 2002;16:2792–2799. doi: 10.1101/gad.983602. PubMed DOI PMC

Agarwal N., Ansari A. Enhancement of transcription by a splicing-competent intron is dependent on promoter directionality. PLoS Genet. 2016;12:1006047. doi: 10.1371/journal.pgen.1006047. PubMed DOI PMC

O’Sullivan J.M., Tan-Wong S.M., Morillon A., Lee B., Coles J., Mellor J., Proudfoot N.J. Gene loops juxtapose promoters and terminators in yeast. Nat. Genet. 2004;36:1014–1018. doi: 10.1038/ng1411. PubMed DOI

Moabbi A.M., Agarwal N., El Kaderi B., Ansari A. Role for gene looping in intron-mediated enhancement of transcription. Proc. Natl. Acad. Sci. USA. 2012;109:8505–8510. doi: 10.1073/pnas.1112400109. PubMed DOI PMC

Gallegos J.E., Rose A.B. The enduring mystery of intron-mediated enhancement. Plant Sci. 2015;237:8–15. doi: 10.1016/j.plantsci.2015.04.017. PubMed DOI

Rose A.B. Introns as gene regulators: A brick on the accelerator. Front. Genet. 2019;10:1–6. doi: 10.3389/fgene.2018.00672. PubMed DOI PMC

Vasil V., Clancy M., Ferl R.J., Vasil I.K., Hannah L.C. Increased gene expression by the first intron of maize shrunken-1 locus in grass species. Plant. Physiol. 1989;91:1575–1579. doi: 10.1104/pp.91.4.1575. PubMed DOI PMC

Clancy M., Vasil V., Curtis Hannah L., Vasil I.K. Maize Shrunken-1 intron and exon regions increase gene expression in maize protoplasts. Plant Sci. 1994;98:151–161. doi: 10.1016/0168-9452(94)90005-1. DOI

Donath M., Mendel R., Cerff R., Martin W. Intron-dependent transient expression of the maize GapA1 gene. Plant Mol. Biol. 1995;28:667–676. doi: 10.1007/BF00021192. PubMed DOI

Vain P., Finer K.R., Engler D.E., Pratt R.C., Finer J.J. Intron-mediated enhancement of gene expression in maize (Zea mays L.) and bluegrass (Poa pratensis L.) Plant. Cell Rep. 1996;15:489–494. doi: 10.1007/BF00232980. PubMed DOI

Morita S., Tsukamoto S., Sakamoto A., Makino H., Nakauji E., Kaminaka H., Masumura T., Ogihara Y., Satoh S., Tanaka K. Differences in intron-mediated enhancement of gene expression by the first intron of cytosolic superoxide dismutase gene from rice in monocot and dicot plants. Plant Biotechnol. 2012;29:115–119. doi: 10.5511/plantbiotechnology.11.1207a. DOI

Rose A.B., Last R.L. Introns act post-transcriptionally to increase expression of the Arabidopsis thaliana tryptophan pathway gene PAT1. Plant J. 1997;11:455–464. doi: 10.1046/j.1365-313X.1997.11030455.x. PubMed DOI

Norris S.R., Meyer S.E., Callis J. The intron of Arabidopsis thaliana polyubiquitin genes is conserved in location and is a quantitative determinant of chimeric gene expression. Plant Mol. Biol. 1993;21:895–906. doi: 10.1007/BF00027120. PubMed DOI

David-Assael O., Berezin I., Shoshani-Knaani N., Saul H., Mizrachy-Dagri T., Chen J., Brook E., Shaul O. AtMHX is an auxin and ABA-regulated transporter whose expression pattern suggests a role in metal homeostasis in tissues with photosynthetic potential. Funct. Plant. Biol. 2006;33:661–672. doi: 10.1071/FP05295. PubMed DOI

Akua T., Shaul O. The Arabidopsis thaliana MHX gene includes an intronic element that boosts translation when localized in a 5′ UTR intron. J. Exp. Bot. 2013;64:4255–4270. doi: 10.1093/jxb/ert235. PubMed DOI PMC

Rose A.B., Elfersi T., Parra G., Korf I. Promoter-proximal introns in Arabidopsis thaliana are enriched in dispersed signals that elevate gene expression. Plant Cell. 2008;20:543–551. doi: 10.1105/tpc.107.057190. PubMed DOI PMC

Rose A.B., Carter A., Korf I., Kojima N. Intron sequences that stimulate gene expression in Arabidopsis. Plant Mol. Biol. 2016;92:337–346. doi: 10.1007/s11103-016-0516-1. PubMed DOI

Bradnam K.R., Korf I. Longer first introns are a general property of eukaryotic gene structure. PLoS ONE. 2008;3 doi: 10.1371/journal.pone.0003093. PubMed DOI PMC

Rose A.B., Beliakoff J.A. Intron-mediated enhancement of gene expression independent of unique intron sequences and splicing. Plant Physiol. 2000;122:535–542. doi: 10.1104/pp.122.2.535. PubMed DOI PMC

Rose A.B. Requirements for intron-mediated enhancement of gene expression in Arabidopsis. RNA. 2002;8:1444–1453. doi: 10.1017/S1355838202020551. PubMed DOI PMC

Emami S., Arumainayagam D., Korf I., Rose A.B. The effects of a stimulating intron on the expression of heterologous genes in Arabidopsis thaliana. Plant Biotechnol. J. 2013;11:555–563. doi: 10.1111/pbi.12043. PubMed DOI

Jeong Y.M., Mun J.H., Lee I., Woo J.C., Hong C.B., Kim S.G. Distinct roles of the first introns on the expression of Arabidopsis profilin gene family members. Plant Physiol. 2006;140:196–209. doi: 10.1104/pp.105.071316. PubMed DOI PMC

Gallegos J.E., Rose A.B. Intron DNA sequences can be more important than the proximal promoter in determining the site of transcript initiation. Plant Cell. 2017;29:843–853. doi: 10.1105/tpc.17.00020. PubMed DOI PMC

Rose A.B. The effect of intron location on intron-mediated enhancement of gene expression in Arabidopsis. Plant. J. 2004;40:744–751. doi: 10.1111/j.1365-313X.2004.02247.x. PubMed DOI

Gallegos J.E., Rose A.B. An intron-derived motif strongly increases gene expression from transcribed sequences through a splicing independent mechanism in Arabidopsis thaliana. Sci. Rep. 2019;9:1–9. doi: 10.1038/s41598-019-50389-5. PubMed DOI PMC

Parra G., Bradnam K., Rose A.B., Korf I. Comparative and functional analysis of intron-mediated enhancement signals reveals conserved features among plants. Nucl. Acids Res. 2011;39:5328–5337. doi: 10.1093/nar/gkr043. PubMed DOI PMC

Rose A.B., Emami S., Bradnam K., Korf I. Evidence for A DNA-based mechanism of intron-mediated enhancement. Front. Plant Sci. 2011;2:1–9. doi: 10.3389/fpls.2011.00098. PubMed DOI PMC

Ner-Gaon H., Halachmi R., Savaldi-Goldstein S., Rubin E., Ophir R., Fluhr R. Intron retention is a major phenomenon in alternative splicing in Arabidopsis. Plant J. 2004;39:877–885. doi: 10.1111/j.1365-313X.2004.02172.x. PubMed DOI

Filichkin S.A., Priest H.D., Givan S.A., Shen R., Bryant D.W., Fox S.E., Wong W.K., Mockler T.C. Genome-wide mapping of alternative splicing in Arabidopsis thaliana. Genome Res. 2010;20:45–58. doi: 10.1101/gr.093302.109. PubMed DOI PMC

Fesenko I., Khazigaleeva R., Kirov I., Kniazev A., Glushenko O., Babalyan K., Arapidi G., Shashkova T., Butenko I., Zgoda V., et al. Alternative splicing shapes transcriptome but not proteome diversity in Physcomitrella patens. Sci. Rep. 2017;7:1–14. doi: 10.1038/s41598-017-02970-z. PubMed DOI PMC

Chaudhary S., Khokhar W., Jabre I., Reddy A.S.N., Byrne L.J., Wilson C.M., Syed N.H. Alternative splicing and protein diversity: Plants versus animals. Front. Plant Sci. 2019;10:1–14. doi: 10.3389/fpls.2019.00708. PubMed DOI PMC

Yu H., Tian C., Yu Y., Jiao Y. Transcriptome Survey of the Contribution of Alternative Splicing to Proteome Diversity in Arabidopsis thaliana. Mol. Plant. 2016;9:749–752. doi: 10.1016/j.molp.2015.12.018. PubMed DOI

Melamud E., Moult J. Stochastic noise in splicing machinery. Nucl. Acids Res. 2009;37:4873–4886. doi: 10.1093/nar/gkp471. PubMed DOI PMC

Srivastava A.K., Lu Y., Zinta G., Lang Z., Zhu J.K. UTR-dependent control of gene expression in plants. Trends Plant Sci. 2018;23:248–259. doi: 10.1016/j.tplants.2017.11.003. PubMed DOI PMC

Kalyna M., Simpson C.G., Syed N.H., Lewandowska D., Marquez Y., Kusenda B., Marshall J., Fuller J., Cardle L., McNicol J., et al. Alternative splicing and nonsense-mediated decay modulate expression of important regulatory genes in Arabidopsis. Nucl. Acids Res. 2012;40:2454–2469. doi: 10.1093/nar/gkr932. PubMed DOI PMC

Laxa M., Müller K., Lange N., Doering L., Pruscha J.T., Peterhänsel C. The 5′UTR intron of arabidopsis GGT1 aminotransferase enhances promoter activity by recruiting RNA polymerase II. Plant. Physiol. 2016;172:313–327. doi: 10.1104/pp.16.00881. PubMed DOI PMC

Remy E., Cabrito T.R., Batista R.A., Hussein M.A.M., Teixeira M.C., Athanasiadis A., Sá-Correia I., Duque P. Intron retention in the 5′UTR of the novel ZIF2 transporter enhances translation to promote zinc tolerance in Arabidopsis. PLoS Genet. 2014;10:e1004375. doi: 10.1371/journal.pgen.1004375. PubMed DOI PMC

Sathe L., Bolinger C., Amin-Ul Mannan M., Dever T.E., Dey M. Evidence that base-pairing interaction between intron and mRNA leader sequences inhibits initiation of HAC1 mRNA translation in yeast. J. Biol. Chem. 2015;290:21821–21832. doi: 10.1074/jbc.M115.649335. PubMed DOI PMC

Von Arnim A.G., Jia Q., Vaughn J.N. Regulation of plant translation by upstream open reading frames. Plant. Sci. 2014;214:1–12. doi: 10.1016/j.plantsci.2013.09.006. PubMed DOI

Hsu P.Y., Calviello L., Wu H.Y.L., Li F.W., Rothfels C.J., Ohler U., Benfey P.N. Super-resolution ribosome profiling reveals unannotated translation events in Arabidopsis. Proc. Natl. Acad. Sci. USA. 2016;113:E7126–E7135. doi: 10.1073/pnas.1614788113. PubMed DOI PMC

Hinnebusch A.G., Ivanov I.P., Sonenberg N. Translational control by 5′-untranslated regions of eukaryotic mRNAs. Science. 2016;352:1413–1416. doi: 10.1126/science.aad9868. PubMed DOI PMC

Lim C.S., Wardell S.J.T., Kleffmann T., Brown C.M. The exon-intron gene structure upstream of the initiation codon predicts translation efficiency. Nucleic Acids Res. 2018;46:4575–4591. doi: 10.1093/nar/gky282. PubMed DOI PMC

Johnstone T.G., Bazzini A.A., Giraldez A.J. Upstream ORF s are prevalent translational repressors in vertebrates. EMBO J. 2016;35:706–723. doi: 10.15252/embj.201592759. PubMed DOI PMC

Ebina I., Takemoto-Tsutsumi M., Watanabe S., Koyama H., Endo Y., Kimata K., Igarashi T., Murakami K., Kudo R., Ohsumi A., et al. Identification of novel Arabidopsis thaliana upstream open reading frames that control expression of the main coding sequences in a peptide sequence-dependent manner. Nucl. Acids Res. 2015;43:1562–1576. doi: 10.1093/nar/gkv018. PubMed DOI PMC

Calvo S.E., Pagliarini D.J., Mootha V.K. Upstream open reading frames cause widespread reduction of protein expression and are polymorphic among humans. Proc. Natl. Acad. Sci. USA. 2009;106:7507–7512. doi: 10.1073/pnas.0810916106. PubMed DOI PMC

Noh A.L., Watanabe S., Takahashi H., Naito S., Onouchi H. An upstream open reading frame represses expression of a tomato homologue of arabidopsis ANAC096, a NAC domain transcription factor gene, in a peptide sequence-dependent manner. Plant Biotechnol. 2015;32:157–163. doi: 10.5511/plantbiotechnology.15.0519a. DOI

Henkin T.M. Riboswitch RNAs: Using RNA to sense cellular metabolism. Genes Dev. 2008;22:3383–3390. doi: 10.1101/gad.1747308. PubMed DOI PMC

Sudarsan N., Barrick J.E., Breaker R.R. Metabolite-binding RNA domains are present in the genes of eukaryotes. RNA. 2003;9:644–647. doi: 10.1261/rna.5090103. PubMed DOI PMC

Bocobza S., Adato A., Mandel T., Shapira M., Nudler E., Aharoni A. Riboswitch-dependent gene regulation and its evolution in the plant kingdom. Genes Dev. 2007;21:2874–2879. doi: 10.1101/gad.443907. PubMed DOI PMC

Cheah M.T., Wachter A., Sudarsan N., Breaker R.R. Control of alternative RNA splicing and gene expression by eukaryotic riboswitches. Nature. 2007;447:497–500. doi: 10.1038/nature05769. PubMed DOI

Álvarez D., Voß B., Maass D., Wüst F., Schaub P., Beyer P., Welsch R. Carotenogenesis is regulated by 5′UTR-mediated translation of phytoene synthase splice variants. Plant. Physiol. 2016;172:2314–2326. doi: 10.1104/pp.16.01262. PubMed DOI PMC

Grojean J., Downes B. Riboswitches as hormone receptors: Hypothetical cytokinin-binding riboswitches in Arabidopsis thaliana. Biol. Direct. 2010;5:60. doi: 10.1186/1745-6150-5-60. PubMed DOI PMC

Reddy A.S.N. Alternative splicing of pre-messenger RNAs in plants in the genomic era. Annu. Rev. Plant Biol. 2007;58:267–294. doi: 10.1146/annurev.arplant.58.032806.103754. PubMed DOI

Reddy A.S.N., Marquez Y., Kalyna M., Barta A. Complexity of the alternative splicing landscape in plants. Plant Cell. 2013;25:3657–3683. doi: 10.1105/tpc.113.117523. PubMed DOI PMC

Crespo-Salvador Ó., Sánchez-Giménez L., López-Galiano M.J., Fernández-Crespo E., Schalschi L., García-Robles I., Rausell C., Real M.D., González-Bosch C. The histone marks signature in exonic and intronic regions is relevant in early response of tomato genes to Botrytis cinerea and in miRNA regulation. Plants. 2020;9:300. doi: 10.3390/plants9030300. PubMed DOI PMC

Egawa C., Kobayashi F., Ishibashi M., Nakamura T., Nakamura C., Takumi S. Differential regulation of transcript accumulation and alternative splicing of a DREB2 homolog under abiotic stress conditions in common wheat. Genes Genet. Syst. 2006;81:77–91. doi: 10.1266/ggs.81.77. PubMed DOI

Chong G.L., Foo M.H., Lin W.D., Wong M.M., Verslues P.E. Highly ABA-induced 1 (HAI1)-interacting protein HIN1 and drought acclimation-enhanced splicing efficiency at intron retention sites. Proc. Natl. Acad. Sci. USA. 2019;116:22376–22385. doi: 10.1073/pnas.1906244116. PubMed DOI PMC

Feng J., Li J., Gao Z., Lu Y., Yu J., Zheng Q., Yan S., Zhang W., He H., Ma L., et al. SKIP confers osmotic tolerance during salt stress by controlling alternative gene splicing in Arabidopsis. Mol. Plant. 2015;8:1038–1052. doi: 10.1016/j.molp.2015.01.011. PubMed DOI

Leviatan N., Alkan N., Leshkowitz D., Fluhr R. Genome-wide survey of cold stress regulated alternative splicing in Arabidopsis thaliana with tiling microarray. PLoS ONE. 2013;8:e66511. doi: 10.1371/journal.pone.0066511. PubMed DOI PMC

Huertas R., Catalá R., Jiménez-Gómez J.M., Castellano M.M., Crevillén P., Piñeiro M., Jarillo J.A., Salinas J. Arabidopsis SME1 regulates plant development and response to abiotic stress by determining spliceosome activity Specificity. Plant. Cell. 2019;31:537–554. doi: 10.1105/tpc.18.00689. PubMed DOI PMC

Kim J.Y., Ryu J.Y., Baek K., Park C.M. High temperature attenuates the gravitropism of inflorescence stems by inducing SHOOT GRAVITROPISM 5 alternative splicing in Arabidopsis. New Phytol. 2016;209:265–279. doi: 10.1111/nph.13602. PubMed DOI

Xin R., Kathare P.K., Huq E. Coordinated regulation of pre-mRNA splicing by the SFPS-RRC1 complex to promote photomorphogenesis. Plant Cell. 2019;31:2052–2069. doi: 10.1105/tpc.18.00786. PubMed DOI PMC

Dong J., Chen H., Deng X.W., Irish V.F., Wei N. Phytochrome B induces intron retention and translational inhibition of PHYTOCHROME-INTERACTING FACTOR3. Plant. Physiol. 2020;182:159–166. doi: 10.1104/pp.19.00835. PubMed DOI PMC

Ling Y., Serrano N., Gao G., Atia M., Mokhtar M., Woo Y.H., Bazin J., Veluchamy A., Benhamed M., Crespi M., et al. Thermopriming triggers splicing memory in Arabidopsis. J. Exp. Bot. 2018;69:2659–2675. doi: 10.1093/jxb/ery062. PubMed DOI PMC

James A.B., Syed N.H., Bordage S., Marshall J., Nimmo G.A., Jenkins G.I., Herzyk P., Brown J.W.S., Nimmo H.G. Alternative splicing mediates responses of the Arabidopsis circadian clock to temperature changes. Plant. Cell. 2012;24:961–981. doi: 10.1105/tpc.111.093948. PubMed DOI PMC

Yang S.Y., Lu W.C., Ko S.S., Sun C.M., Hung J.C., Chiou T.J. Upstream open reading frame and phosphate-regulated expression of rice OsNLA1 controls phosphate transport and reproduction. Plant Physiol. 2020;182:393–407. doi: 10.1104/pp.19.01101. PubMed DOI PMC

Tsugeki R., Tanaka-Sato N., Maruyama N., Terada S., Kojima M., Sakakibara H., Okada K. CLUMSY VEIN, the Arabidopsis DEAH-box Prp16 ortholog, is required for auxin-mediated development. Plant J. 2015;81:183–197. doi: 10.1111/tpj.12721. PubMed DOI

Petrillo E., Godoy Herz M.A., Fuchs A., Reifer D., Fuller J., Yanovsky M.J., Simpson C., Brown J.W.S., Barta A., Kalyna M., et al. A chloroplast retrograde signal regulates nuclear alternative splicing. Science. 2014;344:427–430. doi: 10.1126/science.1250322. PubMed DOI PMC

Daras G., Rigas S., Alatzas A., Samiotaki M., Chatzopoulos D., Tsitsekian D., Papadaki V., Templalexis D., Banilas G., Athanasiadou A.M., et al. LEFKOTHEA Regulates Nuclear and Chloroplast mRNA Splicing in Plants. Dev. Cell. 2019;50:767–779.e7. doi: 10.1016/j.devcel.2019.07.024. PubMed DOI

Wahl M.C., Will C.L., Lührmann R. The spliceosome: Design principles of a dynamic RNP machine. Cell. 2009;136:701–718. doi: 10.1016/j.cell.2009.02.009. PubMed DOI

Brown J.W.S., Marshall D.F., Echeverria M. Intronic noncoding RNAs and splicing. Trends Plant Sci. 2008;13:335–342. doi: 10.1016/j.tplants.2008.04.010. PubMed DOI

Rosado A., Li R., Van De Ven W., Hsu E., Raikhel N.V. Arabidopsis ribosomal proteins control developmental programs through translational regulation of auxin response factors. Proc. Natl. Acad. Sci. USA. 2012;109:19537–19544. doi: 10.1073/pnas.1214774109. PubMed DOI PMC

Cavallari N., Nibau C., Fuchs A., Dadarou D., Barta A., Doonan J.H. The cyclin-dependent kinase G group defines a thermo-sensitive alternative splicing circuit modulating the expression of Arabidopsis ATU2AF65A. Plant J. 2018;94:1010–1022. doi: 10.1111/tpj.13914. PubMed DOI PMC

Parenteau J., Abou Elela S. Introns: Good Day Junk Is Bad Day Treasure. Trends Genet. 2019;35:923–934. doi: 10.1016/j.tig.2019.09.010. PubMed DOI

Munding E.M., Shiue L., Katzman S., Donohue J.P., Ares M. Competition between Pre-mRNAs for the splicing machinery drives global regulation of splicing. Mol. Cell. 2013;51:338–348. doi: 10.1016/j.molcel.2013.06.012. PubMed DOI PMC

Parenteau J., Maignon L., Berthoumieux M., Catala M., Gagnon V., Abou Elela S. Introns are mediators of cell response to starvation. Nature. 2019;565:612–617. doi: 10.1038/s41586-018-0859-7. PubMed DOI

Morgan J.T., Fink G.R., Bartel D.P. Excised linear introns regulate growth in yeast. Nature. 2019;565:606–611. doi: 10.1038/s41586-018-0828-1. PubMed DOI PMC

Zhang Y., Zhang X.O., Chen T., Xiang J.F., Yin Q.F., Xing Y.H., Zhu S., Yang L., Chen L.L. Circular intronic long noncoding RNAs. Mol. Cell. 2013;51:792–806. doi: 10.1016/j.molcel.2013.08.017. PubMed DOI

Li Z., Wang S., Cheng J., Su C., Zhong S., Liu Q., Fang Y., Yu Y., Lv H., Zheng Y., et al. Intron lariat RNA inhibits microRNA biogenesis by sequestering the dicing complex in Arabidopsis. PLoS Genet. 2016;12:e1006422. doi: 10.1371/journal.pgen.1006422. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

The position of the longest intron is related to biological functions in some human genes

. 2022 ; 13 () : 1085139. [epub] 20230110

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...