Detection of helical water flows in sub-nanometer channels

. 2024 Jun 29 ; 15 (1) : 5516. [epub] 20240629

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38951494

Grantová podpora
R23-8379659473 Royal Society of Chemistry (RSC)

Odkazy

PubMed 38951494
PubMed Central PMC11217464
DOI 10.1038/s41467-024-49878-7
PII: 10.1038/s41467-024-49878-7
Knihovny.cz E-zdroje

Nanoscale flows of liquids can be revealed in various biological processes and underlie a wide range of nanofluidic applications. Though the integral characteristics of these systems, such as permeability and effective diffusion coefficient, can be measured in experiments, the behaviour of the flows within nanochannels is still a matter of speculation. Herein, we used a combination of quadrupolar solid-state NMR spectroscopy, computer simulation, and dynamic vapour sorption measurements to analyse water diffusion inside peptide nanochannels. We detected a helical water flow coexisting with a conventional axial flow that are independent of each other, immiscible, and associated with diffusion coefficients that may differ up to 3 orders of magnitude. The trajectory of the helical flow is dictated by the screw-like distribution of ionic groups within the channel walls, while its flux is governed by external water vapour pressure. Similar flows may occur in other types of nanochannels containing helicoidally distributed ionic groups and be exploited in various nanofluidic lab-on-a-chip devices.

Zobrazit více v PubMed

Bathurst J, Thorne C, Hey R. Direct measurements of secondary currents in river bends. Nature. 1977;269:504–506. doi: 10.1038/269504a0. DOI

Tanner WF. Spiral flow in rivers, shallow seas, dust devils, and models. Science. 1963;139:41–42. doi: 10.1126/science.139.3549.41. PubMed DOI

Lounasmaa OV, Thuneberg E. Vortices in rotating superfluid 3He. PNAS. 1996;96:7760–7767. doi: 10.1073/pnas.96.14.7760. PubMed DOI PMC

Liu X, Fan Y, Deng X. Effect of spiral flow on the transport of oxygen in the aorta: a numerical study. Ann. Biomed. Eng. 2010;38:917–926. doi: 10.1007/s10439-009-9878-8. PubMed DOI

Stroock AD, et al. Chaotic mixer for microchannels. Science. 2002;295:647–651. doi: 10.1126/science.1066238. PubMed DOI

Khaydarov V, Borovinskaya ES, Reschetilowski W. Numerical and experimental investigations of a micromixer with chicane mixing geometry. Appl. Sci. 2018;8:2458. doi: 10.3390/app8122458. DOI

Stroock AD, et al. Patterning electro-osmotic flow with patterned surface charge. Phys. Rev. Lett. 2000;84:3314. doi: 10.1103/PhysRevLett.84.3314. PubMed DOI

Hendy SC, Jasperse M, Burnell J. Effect of patterned slip on micro- and nanofluidic flows. Phys. Rev. E. 2005;72:016303. doi: 10.1103/PhysRevE.72.016303. PubMed DOI

Zhao B, MacMinn CW, Juanes R. Wettability control on multiphase flow in patterned microfluidics. PNAS. 2016;113:10251–10256. doi: 10.1073/pnas.1603387113. PubMed DOI PMC

Yang K-S, Chen I-Y, Wang C-C, Shyu J-C. Novel no-moving-part valves for microfluidic devices. Microsyst. Technol. 2010;16:1691–1697. doi: 10.1007/s00542-010-1069-x. DOI

Mo J, et al. Passive microscopic fluidic diodes using asymmetric channels. AIP Adv. 2019;9:085117. doi: 10.1063/1.5115216. DOI

Majumder M, Chopra N, Andrews R, Hinds BJ. Enhanced flow in carbon nanotubes. Nature. 2005;438:44. doi: 10.1038/438044a. PubMed DOI

Duan C, Majumdar A. Anomalous ion transport in 2-nm hydrophilic nanochannels. Nat. Nanotechnol. 2010;5:848–852. doi: 10.1038/nnano.2010.233. PubMed DOI

Fumagalli L, et al. Anomalously low dielectric constant of confined water. Science. 2018;360:1339–1342. doi: 10.1126/science.aat4191. PubMed DOI

Keerthi A, et al. Ballistic molecular transport through two-dimensional channels. Nature. 2018;558:420–424. doi: 10.1038/s41586-018-0203-2. PubMed DOI

Zelenovskiy PS, et al. Efficient water self-diffusion in diphenylalanine peptide nanotubes. ACS Appl. Mater. Interfaces. 2020;12:27485–27492. doi: 10.1021/acsami.0c03658. PubMed DOI

Keerthi A, Goutham S, You Y, Iamprasertkun P, Dryfe RAW. Water friction in nanofluidic channels made from two-dimensional crystals. Nat. Commun. 2021;12:3092. doi: 10.1038/s41467-021-23325-3. PubMed DOI PMC

Lauga E, Stone HA. Effective slip in pressure-driven Stokes flow. J. Fluid Mech. 2003;489:55–77. doi: 10.1017/S0022112003004695. DOI

Wang H, et al. Enhanced water flow and apparent viscosity model considering wettability and shape effects. Fuel. 2019;253:1351–1360. doi: 10.1016/j.fuel.2019.05.098. DOI

Zhan S, et al. Study of liquid-liquid two-phase flow in hydrophilic nanochannels by molecular simulations and theoretical modeling. Chem. Eng. J. 2020;395:125053. doi: 10.1016/j.cej.2020.125053. DOI

Karakare S, Kar A, Kumar A, Chakraborty S. Patterning nanoscale flow vortices in nanochannels with patterned substrates. Phys. Rev. E. 2010;81:016324. doi: 10.1103/PhysRevE.81.016324. PubMed DOI

Jeon C, Jeong H, Jung Y. Nanoscale spiral flow in a cylindrical channel. Phys. Rev. E. 2011;83:056324. doi: 10.1103/PhysRevE.83.056324. PubMed DOI

Lu M, Connell LD, Lei H. Water flow behaviour in nanochannels: the surface-force effect and slip length. SN Appl. Sci. 2019;1:1185. doi: 10.1007/s42452-019-1225-6. DOI

Melillo M, Zhu F, Snyder MA, Mittal J. Water transport through nanotubes with varying interaction strength between tube wall and water. J. Phys. Chem. Lett. 2011;2:2978–2983. doi: 10.1021/jz2012319. PubMed DOI PMC

Comer J, Dehez F, Cai W, Chipot C. Water conduction through a peptide nanotube. J. Phys. Chem. C. 2013;117:26797–26803. doi: 10.1021/jp4088223. DOI

Alexiadis A, Kassinos S. Molecular simulation of water in carbon nanotubes. Chem. Rev. 2008;108:5014–5034. doi: 10.1021/cr078140f. PubMed DOI

Whitesides GM, Stroock AD. Flexible methods for microfluidics. Phys. Today. 2001;54:42–48. doi: 10.1063/1.1387591. DOI

Tao K, Makam P, Aizen R, Gazit E. Self-assembling peptide semiconductors. Science. 2017;358:eaam9756. doi: 10.1126/science.aam9756. PubMed DOI PMC

Nuraeva A, et al. Evaporation-driven crystallization of diphenylalanine microtubes for microelectronic applications. Cryst. Growth Des. 2016;16:1472–1479. doi: 10.1021/acs.cgd.5b01604. DOI

Esin A, et al. Pyroelectric effect and polarization instability in self-assembled diphenylalanine microtubes. Appl. Phys. Lett. 2016;109:142902. doi: 10.1063/1.4962652. DOI

Andrade-Filho T, Ferreira FF, Alves WA, Rocha AR. The effects of water molecules on the electronic and structural properties of peptide nanotubes. Phys. Chem. Chem. Phys. 2013;15:7555–7559. doi: 10.1039/c3cp43952f. PubMed DOI

Salehli F, et al. Nanoconfined water governs polarization-related properties of self-assembled peptide nanotubes. Nano Select. 2021;2:817–829. doi: 10.1002/nano.202000220. DOI

Handelman A, Lapshina N, Apter B, Rosenman G. Peptide integrated optics. Adv. Mater. 2018;30:1705776. doi: 10.1002/adma.201705776. PubMed DOI

Ghadiri M, Granja J, Buehler L. Artificial transmembrane ion channels from self-assembling peptide nanotubes. Nature. 1994;369:301–304. doi: 10.1038/369301a0. PubMed DOI

Breed J, Sankararamakrishnan R, Kerr ID, Sansom MSP. Molecular dynamics simulations of water within models of ion channels. Biophys. J. 1996;70:1643–1661. doi: 10.1016/S0006-3495(96)79727-8. PubMed DOI PMC

Montenegro J, Ghadiri MR, Granja JR. Ion channel models based on self-assembling cyclic peptide nanotubes. Acc. Chem. Res. 2013;46:2955–2965. doi: 10.1021/ar400061d. PubMed DOI PMC

Görbitz CH. Microporous organic materials from hydrophobic dipeptides. Chem. Eur. J. 2007;13:1022–1031. doi: 10.1002/chem.200601427. PubMed DOI

Görbitz CH. Nanotube formation by hydrophobic dipeptides. Chem. Eur. J. 2001;7:5153–5159. doi: 10.1002/1521-3765(20011203)7:23<5153::AID-CHEM5153>3.0.CO;2-N. PubMed DOI

Zelenovskiy P, et al. The effect of water molecules on elastic and piezoelectric properties of diphenylalanine microtubes. IEEE Trans. Dielectr. Electr. Insul. 2020;27:1474–1477. doi: 10.1109/TDEI.2020.008921. DOI

Andrade-Filho T, Martins TC, Ferreira FF, Alves WA, Rocha AR. Water-driven stabilization of diphenylalanine nanotube structures. Theor. Chem. Acc. 2016;135:185. doi: 10.1007/s00214-016-1936-3. DOI

Bystrov V, et al. Structures and properties of the self-assembling diphenylalanine peptide nanotubes containing water molecules: modeling and data analysis. Nanomaterials. 2020;10:1999. doi: 10.3390/nano10101999. PubMed DOI PMC

Kolokolov DI, Freude D, Stepanov AG. Dynamics in nanoporous materials probed by 2H solid state NMR: estimation of self-diffusion coefficients. Adsorption. 2021;27:841–855. doi: 10.1007/s10450-020-00256-x. DOI

O’Hare B, Grutzeck MW, Kim SH, Asay DB, Benesi AJ. Solid state water motions revealed by deuterium relaxation in 2H2O-synthesized kanemite and 2H2O-hydrated Na+-Zeolite A. J. Magn. Reson. 2008;195:85–102. doi: 10.1016/j.jmr.2008.08.013. PubMed DOI

Harris TK, Mildvan AS. High-precision measurement of hydrogen bond lengths in proteins by nuclear magnetic resonance methods. Proteins. 1999;35:275–282. doi: 10.1002/(SICI)1097-0134(19990515)35:3<275::AID-PROT1>3.0.CO;2-V. PubMed DOI

Vega, A. J. Quadrupolar nuclei in solids. In NMR of Quadrupolar Nuclei in Solid Materials (eds Wasylishen, R.E., Ashbrook, S.E. & Wimperis, S.) 17–44 (Wiley, 2012).

Nishchenko AM, Kolokolov DI, Stepanov AG. Mobility of solid tert-butyl alcohol studied by deuterium NMR. J. Phys. Chem. A. 2011;115:7428–7436. doi: 10.1021/jp203353x. PubMed DOI

Berger, S. & Braun, S. 200 and More NMR Experiments: A Practical Course (Wiley-VCH, 2004).

Zelenovskiy PS, et al. Chirality-dependent growth of self-assembled diphenylalanine microtubes. Cryst. Growth Des. 2019;19:6414–6421. doi: 10.1021/acs.cgd.9b00884. DOI

Im W, Seefeld S, Roux B. A grand canonical Monte Carlo–Brownian dynamics algorithm for simulating ion channels. Biophys. J. 2000;79:788–801. doi: 10.1016/S0006-3495(00)76336-3. PubMed DOI PMC

He L, et al. Structure, gating, and pharmacology of human CaV3.3 channel. Nat. Commun. 2022;13:2084. doi: 10.1038/s41467-022-29728-0. PubMed DOI PMC

Im W, Roux B. Ion permeation and selectivity of OmpF porin: a theoretical study based on molecular dynamics, Brownian dynamics, and continuum electrodiffusion theory. J. Mol. Biol. 2002;322:851–869. doi: 10.1016/S0022-2836(02)00778-7. PubMed DOI

Muñoz-Santiburcio D, Marx D. Chemistry in nanoconfined water. Chem. Sci. 2017;8:3444–3452. doi: 10.1039/C6SC04989C. PubMed DOI PMC

Grommet AB, Feller M, Klajn R. Chemical reactivity under nanoconfinement. Nat. Nanotechnol. 2020;15:256–271. doi: 10.1038/s41565-020-0652-2. PubMed DOI

Hanikel N, Prévot MS, Yaghi OM. MOF water harvesters. Nat. Nanotechnol. 2020;15:348–355. doi: 10.1038/s41565-020-0673-x. PubMed DOI

Yang J, et al. Advancing osmotic power generation by covalent organic framework monolayer. Nat. Nanotechnol. 2022;17:622–628. doi: 10.1038/s41565-022-01110-7. PubMed DOI

Clark SJ, et al. First principles methods using CASTEP. Z. Kristallogr.—Cryst. Mater. 2005;220:567–570. doi: 10.1524/zkri.220.5.567.65075. DOI

Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B. 1990;41:7892(R). doi: 10.1103/PhysRevB.41.7892. PubMed DOI

Yates JR, Pickard CJ, Mauri F. Calculation of NMR chemical shifts for extended systems using ultrasoft pseudopotentials. Phys. Rev. B. 2007;76:024401. doi: 10.1103/PhysRevB.76.024401. DOI

Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996;77:3865. doi: 10.1103/PhysRevLett.77.3865. PubMed DOI

Tkatchenko A, Scheffler M. Accurate molecular Van Der Waals interactions from ground-state electron density and free-atom reference data. Phys. Rev. Lett. 2009;102:073005. doi: 10.1103/PhysRevLett.102.073005. PubMed DOI

Pickard CJ, Mauri F. All-electron magnetic response with pseudopotentials: NMR chemical shifts. Phys. Rev. B. 2001;63:245101. doi: 10.1103/PhysRevB.63.245101. DOI

Thompson AP, et al. LAMMPS—a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comput. Phys. Commun. 2022;271:108171. doi: 10.1016/j.cpc.2021.108171. DOI

Vanommeslaeghe K, et al. CHARMM general force field: a force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J. Comput. Chem. 2010;31:671–690. doi: 10.1002/jcc.21367. PubMed DOI PMC

Horn HW, et al. Development of an improved four-site water model for biomolecular simulations: TIP4P-Ew. J. Chem. Phys. 2004;120:9665–9678. doi: 10.1063/1.1683075. PubMed DOI

Martyna GJ, Klein ML, Tuckerman M. Nosé–Hoover chains: the canonical ensemble via continuous dynamics. J. Chem. Phys. 1992;97:2635–2643. doi: 10.1063/1.463940. DOI

Verlet L. Computer “experiments” on classical fluids. I. Thermodynamical properties of Lennard–Jones molecules. Phys. Rev. 1967;159:98. doi: 10.1103/PhysRev.159.98. DOI

Hockney, R. W. & Eastwood, J. W. Particle–particle–particle-mesh (P3M) algorithms. In Computer Simulation Using Particles 267–304 10.1201/9780367806934 (CRC Press, 1988).

Michaud-Agrawal N, Denning EJ, Woolf TB, Beckstein O. MDAnalysis: a toolkit for the analysis of molecular dynamics simulations. J. Comput. Chem. 2011;32:2319–2327. doi: 10.1002/jcc.21787. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...