Detection of helical water flows in sub-nanometer channels
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
R23-8379659473
Royal Society of Chemistry (RSC)
PubMed
38951494
PubMed Central
PMC11217464
DOI
10.1038/s41467-024-49878-7
PII: 10.1038/s41467-024-49878-7
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Nanoscale flows of liquids can be revealed in various biological processes and underlie a wide range of nanofluidic applications. Though the integral characteristics of these systems, such as permeability and effective diffusion coefficient, can be measured in experiments, the behaviour of the flows within nanochannels is still a matter of speculation. Herein, we used a combination of quadrupolar solid-state NMR spectroscopy, computer simulation, and dynamic vapour sorption measurements to analyse water diffusion inside peptide nanochannels. We detected a helical water flow coexisting with a conventional axial flow that are independent of each other, immiscible, and associated with diffusion coefficients that may differ up to 3 orders of magnitude. The trajectory of the helical flow is dictated by the screw-like distribution of ionic groups within the channel walls, while its flux is governed by external water vapour pressure. Similar flows may occur in other types of nanochannels containing helicoidally distributed ionic groups and be exploited in various nanofluidic lab-on-a-chip devices.
Zobrazit více v PubMed
Bathurst J, Thorne C, Hey R. Direct measurements of secondary currents in river bends. Nature. 1977;269:504–506. doi: 10.1038/269504a0. DOI
Tanner WF. Spiral flow in rivers, shallow seas, dust devils, and models. Science. 1963;139:41–42. doi: 10.1126/science.139.3549.41. PubMed DOI
Lounasmaa OV, Thuneberg E. Vortices in rotating superfluid 3He. PNAS. 1996;96:7760–7767. doi: 10.1073/pnas.96.14.7760. PubMed DOI PMC
Liu X, Fan Y, Deng X. Effect of spiral flow on the transport of oxygen in the aorta: a numerical study. Ann. Biomed. Eng. 2010;38:917–926. doi: 10.1007/s10439-009-9878-8. PubMed DOI
Stroock AD, et al. Chaotic mixer for microchannels. Science. 2002;295:647–651. doi: 10.1126/science.1066238. PubMed DOI
Khaydarov V, Borovinskaya ES, Reschetilowski W. Numerical and experimental investigations of a micromixer with chicane mixing geometry. Appl. Sci. 2018;8:2458. doi: 10.3390/app8122458. DOI
Stroock AD, et al. Patterning electro-osmotic flow with patterned surface charge. Phys. Rev. Lett. 2000;84:3314. doi: 10.1103/PhysRevLett.84.3314. PubMed DOI
Hendy SC, Jasperse M, Burnell J. Effect of patterned slip on micro- and nanofluidic flows. Phys. Rev. E. 2005;72:016303. doi: 10.1103/PhysRevE.72.016303. PubMed DOI
Zhao B, MacMinn CW, Juanes R. Wettability control on multiphase flow in patterned microfluidics. PNAS. 2016;113:10251–10256. doi: 10.1073/pnas.1603387113. PubMed DOI PMC
Yang K-S, Chen I-Y, Wang C-C, Shyu J-C. Novel no-moving-part valves for microfluidic devices. Microsyst. Technol. 2010;16:1691–1697. doi: 10.1007/s00542-010-1069-x. DOI
Mo J, et al. Passive microscopic fluidic diodes using asymmetric channels. AIP Adv. 2019;9:085117. doi: 10.1063/1.5115216. DOI
Majumder M, Chopra N, Andrews R, Hinds BJ. Enhanced flow in carbon nanotubes. Nature. 2005;438:44. doi: 10.1038/438044a. PubMed DOI
Duan C, Majumdar A. Anomalous ion transport in 2-nm hydrophilic nanochannels. Nat. Nanotechnol. 2010;5:848–852. doi: 10.1038/nnano.2010.233. PubMed DOI
Fumagalli L, et al. Anomalously low dielectric constant of confined water. Science. 2018;360:1339–1342. doi: 10.1126/science.aat4191. PubMed DOI
Keerthi A, et al. Ballistic molecular transport through two-dimensional channels. Nature. 2018;558:420–424. doi: 10.1038/s41586-018-0203-2. PubMed DOI
Zelenovskiy PS, et al. Efficient water self-diffusion in diphenylalanine peptide nanotubes. ACS Appl. Mater. Interfaces. 2020;12:27485–27492. doi: 10.1021/acsami.0c03658. PubMed DOI
Keerthi A, Goutham S, You Y, Iamprasertkun P, Dryfe RAW. Water friction in nanofluidic channels made from two-dimensional crystals. Nat. Commun. 2021;12:3092. doi: 10.1038/s41467-021-23325-3. PubMed DOI PMC
Lauga E, Stone HA. Effective slip in pressure-driven Stokes flow. J. Fluid Mech. 2003;489:55–77. doi: 10.1017/S0022112003004695. DOI
Wang H, et al. Enhanced water flow and apparent viscosity model considering wettability and shape effects. Fuel. 2019;253:1351–1360. doi: 10.1016/j.fuel.2019.05.098. DOI
Zhan S, et al. Study of liquid-liquid two-phase flow in hydrophilic nanochannels by molecular simulations and theoretical modeling. Chem. Eng. J. 2020;395:125053. doi: 10.1016/j.cej.2020.125053. DOI
Karakare S, Kar A, Kumar A, Chakraborty S. Patterning nanoscale flow vortices in nanochannels with patterned substrates. Phys. Rev. E. 2010;81:016324. doi: 10.1103/PhysRevE.81.016324. PubMed DOI
Jeon C, Jeong H, Jung Y. Nanoscale spiral flow in a cylindrical channel. Phys. Rev. E. 2011;83:056324. doi: 10.1103/PhysRevE.83.056324. PubMed DOI
Lu M, Connell LD, Lei H. Water flow behaviour in nanochannels: the surface-force effect and slip length. SN Appl. Sci. 2019;1:1185. doi: 10.1007/s42452-019-1225-6. DOI
Melillo M, Zhu F, Snyder MA, Mittal J. Water transport through nanotubes with varying interaction strength between tube wall and water. J. Phys. Chem. Lett. 2011;2:2978–2983. doi: 10.1021/jz2012319. PubMed DOI PMC
Comer J, Dehez F, Cai W, Chipot C. Water conduction through a peptide nanotube. J. Phys. Chem. C. 2013;117:26797–26803. doi: 10.1021/jp4088223. DOI
Alexiadis A, Kassinos S. Molecular simulation of water in carbon nanotubes. Chem. Rev. 2008;108:5014–5034. doi: 10.1021/cr078140f. PubMed DOI
Whitesides GM, Stroock AD. Flexible methods for microfluidics. Phys. Today. 2001;54:42–48. doi: 10.1063/1.1387591. DOI
Tao K, Makam P, Aizen R, Gazit E. Self-assembling peptide semiconductors. Science. 2017;358:eaam9756. doi: 10.1126/science.aam9756. PubMed DOI PMC
Nuraeva A, et al. Evaporation-driven crystallization of diphenylalanine microtubes for microelectronic applications. Cryst. Growth Des. 2016;16:1472–1479. doi: 10.1021/acs.cgd.5b01604. DOI
Esin A, et al. Pyroelectric effect and polarization instability in self-assembled diphenylalanine microtubes. Appl. Phys. Lett. 2016;109:142902. doi: 10.1063/1.4962652. DOI
Andrade-Filho T, Ferreira FF, Alves WA, Rocha AR. The effects of water molecules on the electronic and structural properties of peptide nanotubes. Phys. Chem. Chem. Phys. 2013;15:7555–7559. doi: 10.1039/c3cp43952f. PubMed DOI
Salehli F, et al. Nanoconfined water governs polarization-related properties of self-assembled peptide nanotubes. Nano Select. 2021;2:817–829. doi: 10.1002/nano.202000220. DOI
Handelman A, Lapshina N, Apter B, Rosenman G. Peptide integrated optics. Adv. Mater. 2018;30:1705776. doi: 10.1002/adma.201705776. PubMed DOI
Ghadiri M, Granja J, Buehler L. Artificial transmembrane ion channels from self-assembling peptide nanotubes. Nature. 1994;369:301–304. doi: 10.1038/369301a0. PubMed DOI
Breed J, Sankararamakrishnan R, Kerr ID, Sansom MSP. Molecular dynamics simulations of water within models of ion channels. Biophys. J. 1996;70:1643–1661. doi: 10.1016/S0006-3495(96)79727-8. PubMed DOI PMC
Montenegro J, Ghadiri MR, Granja JR. Ion channel models based on self-assembling cyclic peptide nanotubes. Acc. Chem. Res. 2013;46:2955–2965. doi: 10.1021/ar400061d. PubMed DOI PMC
Görbitz CH. Microporous organic materials from hydrophobic dipeptides. Chem. Eur. J. 2007;13:1022–1031. doi: 10.1002/chem.200601427. PubMed DOI
Görbitz CH. Nanotube formation by hydrophobic dipeptides. Chem. Eur. J. 2001;7:5153–5159. doi: 10.1002/1521-3765(20011203)7:23<5153::AID-CHEM5153>3.0.CO;2-N. PubMed DOI
Zelenovskiy P, et al. The effect of water molecules on elastic and piezoelectric properties of diphenylalanine microtubes. IEEE Trans. Dielectr. Electr. Insul. 2020;27:1474–1477. doi: 10.1109/TDEI.2020.008921. DOI
Andrade-Filho T, Martins TC, Ferreira FF, Alves WA, Rocha AR. Water-driven stabilization of diphenylalanine nanotube structures. Theor. Chem. Acc. 2016;135:185. doi: 10.1007/s00214-016-1936-3. DOI
Bystrov V, et al. Structures and properties of the self-assembling diphenylalanine peptide nanotubes containing water molecules: modeling and data analysis. Nanomaterials. 2020;10:1999. doi: 10.3390/nano10101999. PubMed DOI PMC
Kolokolov DI, Freude D, Stepanov AG. Dynamics in nanoporous materials probed by 2H solid state NMR: estimation of self-diffusion coefficients. Adsorption. 2021;27:841–855. doi: 10.1007/s10450-020-00256-x. DOI
O’Hare B, Grutzeck MW, Kim SH, Asay DB, Benesi AJ. Solid state water motions revealed by deuterium relaxation in 2H2O-synthesized kanemite and 2H2O-hydrated Na+-Zeolite A. J. Magn. Reson. 2008;195:85–102. doi: 10.1016/j.jmr.2008.08.013. PubMed DOI
Harris TK, Mildvan AS. High-precision measurement of hydrogen bond lengths in proteins by nuclear magnetic resonance methods. Proteins. 1999;35:275–282. doi: 10.1002/(SICI)1097-0134(19990515)35:3<275::AID-PROT1>3.0.CO;2-V. PubMed DOI
Vega, A. J. Quadrupolar nuclei in solids. In NMR of Quadrupolar Nuclei in Solid Materials (eds Wasylishen, R.E., Ashbrook, S.E. & Wimperis, S.) 17–44 (Wiley, 2012).
Nishchenko AM, Kolokolov DI, Stepanov AG. Mobility of solid tert-butyl alcohol studied by deuterium NMR. J. Phys. Chem. A. 2011;115:7428–7436. doi: 10.1021/jp203353x. PubMed DOI
Berger, S. & Braun, S. 200 and More NMR Experiments: A Practical Course (Wiley-VCH, 2004).
Zelenovskiy PS, et al. Chirality-dependent growth of self-assembled diphenylalanine microtubes. Cryst. Growth Des. 2019;19:6414–6421. doi: 10.1021/acs.cgd.9b00884. DOI
Im W, Seefeld S, Roux B. A grand canonical Monte Carlo–Brownian dynamics algorithm for simulating ion channels. Biophys. J. 2000;79:788–801. doi: 10.1016/S0006-3495(00)76336-3. PubMed DOI PMC
He L, et al. Structure, gating, and pharmacology of human CaV3.3 channel. Nat. Commun. 2022;13:2084. doi: 10.1038/s41467-022-29728-0. PubMed DOI PMC
Im W, Roux B. Ion permeation and selectivity of OmpF porin: a theoretical study based on molecular dynamics, Brownian dynamics, and continuum electrodiffusion theory. J. Mol. Biol. 2002;322:851–869. doi: 10.1016/S0022-2836(02)00778-7. PubMed DOI
Muñoz-Santiburcio D, Marx D. Chemistry in nanoconfined water. Chem. Sci. 2017;8:3444–3452. doi: 10.1039/C6SC04989C. PubMed DOI PMC
Grommet AB, Feller M, Klajn R. Chemical reactivity under nanoconfinement. Nat. Nanotechnol. 2020;15:256–271. doi: 10.1038/s41565-020-0652-2. PubMed DOI
Hanikel N, Prévot MS, Yaghi OM. MOF water harvesters. Nat. Nanotechnol. 2020;15:348–355. doi: 10.1038/s41565-020-0673-x. PubMed DOI
Yang J, et al. Advancing osmotic power generation by covalent organic framework monolayer. Nat. Nanotechnol. 2022;17:622–628. doi: 10.1038/s41565-022-01110-7. PubMed DOI
Clark SJ, et al. First principles methods using CASTEP. Z. Kristallogr.—Cryst. Mater. 2005;220:567–570. doi: 10.1524/zkri.220.5.567.65075. DOI
Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B. 1990;41:7892(R). doi: 10.1103/PhysRevB.41.7892. PubMed DOI
Yates JR, Pickard CJ, Mauri F. Calculation of NMR chemical shifts for extended systems using ultrasoft pseudopotentials. Phys. Rev. B. 2007;76:024401. doi: 10.1103/PhysRevB.76.024401. DOI
Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996;77:3865. doi: 10.1103/PhysRevLett.77.3865. PubMed DOI
Tkatchenko A, Scheffler M. Accurate molecular Van Der Waals interactions from ground-state electron density and free-atom reference data. Phys. Rev. Lett. 2009;102:073005. doi: 10.1103/PhysRevLett.102.073005. PubMed DOI
Pickard CJ, Mauri F. All-electron magnetic response with pseudopotentials: NMR chemical shifts. Phys. Rev. B. 2001;63:245101. doi: 10.1103/PhysRevB.63.245101. DOI
Thompson AP, et al. LAMMPS—a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comput. Phys. Commun. 2022;271:108171. doi: 10.1016/j.cpc.2021.108171. DOI
Vanommeslaeghe K, et al. CHARMM general force field: a force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J. Comput. Chem. 2010;31:671–690. doi: 10.1002/jcc.21367. PubMed DOI PMC
Horn HW, et al. Development of an improved four-site water model for biomolecular simulations: TIP4P-Ew. J. Chem. Phys. 2004;120:9665–9678. doi: 10.1063/1.1683075. PubMed DOI
Martyna GJ, Klein ML, Tuckerman M. Nosé–Hoover chains: the canonical ensemble via continuous dynamics. J. Chem. Phys. 1992;97:2635–2643. doi: 10.1063/1.463940. DOI
Verlet L. Computer “experiments” on classical fluids. I. Thermodynamical properties of Lennard–Jones molecules. Phys. Rev. 1967;159:98. doi: 10.1103/PhysRev.159.98. DOI
Hockney, R. W. & Eastwood, J. W. Particle–particle–particle-mesh (P3M) algorithms. In Computer Simulation Using Particles 267–304 10.1201/9780367806934 (CRC Press, 1988).
Michaud-Agrawal N, Denning EJ, Woolf TB, Beckstein O. MDAnalysis: a toolkit for the analysis of molecular dynamics simulations. J. Comput. Chem. 2011;32:2319–2327. doi: 10.1002/jcc.21787. PubMed DOI PMC