Optimization of cooling rate of Q-P treated 42SiCr steel using AI digital twinning

. 2024 Jun 15 ; 10 (11) : e32101. [epub] 20240531

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38961973
Odkazy

PubMed 38961973
PubMed Central PMC11219328
DOI 10.1016/j.heliyon.2024.e32101
PII: S2405-8440(24)08132-5
Knihovny.cz E-zdroje

In the continuously advancing field of mechanical engineering, digitalization is bringing a major transformation, specifically with the concept of digital twins. Digital twins are dynamic digital models of real-world systems and processes, crucial for Industry 4.0 and the emerging Industry 5.0, which are changing how humans and machines work together in manufacturing. This paper explores the combination of physics-based and data-driven modeling using advanced Artificial Intelligence (AI) and Machine Learning (ML) techniques. This approach provides a comprehensive understanding of mechanical systems, improving materials design and manufacturing processes. The focus is on the advanced 42SiCr alloy, where AI-driven digital twinning is used to optimize cooling rates during Quenching and Partitioning (Q-P) treatments. This leads to significant improvements in the mechanical properties of 42SiCr steel. Given its complex properties influenced by various factors, this alloy is perfect for digital twinning. The Q-P heat treatment process not only restores the material's deformability but also gives it advanced high-strength steel (AHSS) properties. The findings show how AI and ML can effectively guide the development of high-strength steels and enhance their treatment processes. Additionally, integrating digital twins with new technologies like the Metaverse offers exciting possibilities for simulated production, remote monitoring, and collaborative design. By establishing a clear workflow from physical to digital twins and presenting empirical results, this paper connects theoretical modeling with practical applications, paving the way for smarter manufacturing solutions in mechanical engineering. Furthermore, this paper analyzes how digital twins can be integrated into advanced technologies like the Metaverse, opening up new possibilities for simulated production, remote monitoring, design collaboration, training simulations, analytics, and complete supply chain visibility. This integration is a crucial step toward realizing the full potential of digitalization in mechanical engineering.

Zobrazit více v PubMed

Gyulai D., Pfeiffer A., Nick G., Gallina V., Sihn W., Monostori L.J.I.-P. vol. 51. 2018. pp. 1029–1034. (Lead Time Prediction in a Flow-Shop Environment with Analytical and Machine Learning Approaches).

Madni A.M., Madni C.C., Lucero S.D.J.S. vol. 7. 2019. p. 7. (Leveraging Digital Twin Technology in Model-Based Systems Engineering).

Yuan Y., Tang X., Zhou W., Pan W., Li X., Zhang H.-T., Ding H., Goncalves J.J.N.c. vol. 10. 2019. p. 4894. (Data Driven Discovery of Cyber Physical Systems). PubMed PMC

Soori M., Arezoo B., Dastres R.J.S.M., Economics S. Digital twin for smart manufacturing. A Review. 2023

Papacharalampopoulos A., Foteinopoulos P., Stavropoulos P.J.P.C. Integration of Industry 5.0 requirements in digital twin-supported manufacturing process selection: a framework. 2023;119:545–551.

Leng J., Wang D., Shen W., Li X., Liu Q., Chen X.J.J. Digital twins-based smart manufacturing system design in Industry 4.0. A review. 2021;60:119–137.

Xu X., Lu Y., Vogel-Heuser B., Wang L.J.M.S. Industry 4.0 and industry 5.0—inception, conception and perception. 2021;61:530–535.

Monostori L., Kádár B., Bauernhansl T., Kondoh S., Kumara S., Reinhart G., Sauer O., Schuh G., Sihn W., Ueda K.J.C.A. vol. 65. 2016. pp. 621–641. (Cyber-physical Systems in Manufacturing).

Oñoro M., Macías-Delgado J., Auger M., de Castro V., Leguey T.J.N.M. Energy. Mechanical properties and stability of precipitates of an ODS steel after thermal cycling and. Aging. 2020;24

Khalaj O., Jamshidi M.B., Saebnoori E., Mašek B., Štadler C., Svoboda J.J.I.A. vol. 9. 2021. pp. 156930–156946. (Hybrid Machine Learning Techniques and Computational Mechanics: Estimating the Dynamic Behavior of Oxide Precipitation Hardened Steel).

Khalaj O., Jamshidi M., Hassas P., Mašek B., Štadler C., Svoboda J.J.P. vol. 11. 2023. p. 1703. (Digital Twinning of a Magnetic Forging Holder to Enhance Productivity for Industry 4.0 and Metaverse).

Sun J., Yan C., Wen J.J.I.I. Measurement. Intelligent bearing fault diagnosis method combining compressed data acquisition and deep learning. 2017;67:185–195.

Li H., Wang X., Song Y., Li Y., Li X., Ji Y.J.M.T.C. vol. 36. 2023. (Physical Metallurgy Guided Machine Learning to Predict Hot Deformation Mechanism of Stainless Steel).

Bobbili R., Ramakrishna B.J.M.T.C. Prediction of phases in high entropy alloys using. Mach. Learn. 2023;36

Jin H., Wang H., Wang X., Zhang J., Zhou C.J.M.T.C. Alloying element distributions of precipitates in Cu–Cr alloys aided by. Mach. Learn. 2023;36

Zhu Z., Ning W., Niu X., Wang Q., Shi R., Zhao Y.J.M.T.C. 2023. Designing High Elastic Modulus Magnesium-Based Composite Materials via Machine Learning Approach.

Khalaj O., Jamshidi M., Hassas P., Hosseininezhad M., Mašek B., Štadler C., Svoboda J.J.M. vol. 11. 2022. p. 4. (Metaverse and AI Digital Twinning of 42SiCr Steel Alloys).

Zhang Y., Xue C., Yang X., Li X., Wang S., Li Q., Wang B., Zhang C., Dou R., Wang J.J.M.T.C. 2023. Uncovering the Effects of Local Pressure and Cooling Rates on Porosity Formation in AA2060 Al-Li Alloy.

Li Y., Xia W., Wang X., Ju Y., Liu T., Zhao D., Zuo M.J.M.T.C. vol. 33. 2022. (Effects of Cooling Rate on the Microstructure Control and Liquid–Liquid Phase Separation Behavior of Cu–Fe–P Immiscible Alloys).

Khalaj O., Saebnoori E., Mašek B., Štadler C., Hassas P., Svoboda J.J.M. The influence of cooling rate between Ms and Mf on the mechanical properties of low alloy. 42SiCr Steel Treated by the QP Process. 2022;12:2081.

Wang J., Li Y., Gao R.X., Zhang F.J.M.S. Hybrid physics-based and data-driven models for smart manufacturing: modeling, simulation, and explainability. 2022;63:381–391.

Clerge M., Boucher C.J.W.W.P. vol. 23. 2009. pp. 64–71. (Digital Modeling: a Tool for Optimizing Heat Treatments: Digital Simulation of Intermediate Heat Treatments (DHT and ISR) in the Construction of CrMo Type Steel Devices).

Slováček M. Proceedings of the Journal de Physique IV (Proceedings) 2004. Application of numerical simulation of heat treatment in industry; pp. 753–760.

Pascoal-Faria P., da Silva D.P., Mateus A., Mitchell G.R.T.P. 2023. Digitalisation of Material Science–Improving Product Design in the Context of Industry 4.0.

Ostertagová E.J.P.E. vol. 48. 2012. pp. 500–506. (Modeling Using Polynomial Regression).

Janiesch C., Zschech P., Heinrich K.J.E.M. vol. 31. 2021. pp. 685–695. (Machine Learning and Deep Learning).

Chen C.-H., Lai J.-P., Chang Y.-M., Lai C.-J., Pai P.-F.J.E. vol. 12. 2023. p. 3071. (A Study of Optimization in Deep Neural Networks for Regression).

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...