An in-vivo treatment monitoring system for ion-beam radiotherapy based on 28 Timepix3 detectors
Language English Country England, Great Britain Media electronic
Document type Journal Article
Grant support
Internal ID
National Center for Tumor Diseases (NCT Heidelberg)
Internal ID
National Center for Tumor Diseases (NCT Heidelberg)
International PhD program
Deutsches Krebsforschungszentrum
PubMed
38965349
PubMed Central
PMC11224389
DOI
10.1038/s41598-024-66266-9
PII: 10.1038/s41598-024-66266-9
Knihovny.cz E-resources
- Keywords
- Charged nuclear fragments, In-vivo monitoring, Ion-beam therapy, Timepix3,
- MeSH
- Radiotherapy Dosage MeSH
- Phantoms, Imaging * MeSH
- Humans MeSH
- Heavy Ion Radiotherapy methods MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
Ion-beam radiotherapy is an advanced cancer treatment modality offering steep dose gradients and a high biological effectiveness. These gradients make the therapy vulnerable to patient-setup and anatomical changes between treatment fractions, which may go unnoticed. Charged fragments from nuclear interactions of the ion beam with the patient tissue may carry information about the treatment quality. Currently, the fragments escape the patient undetected. Inter-fractional in-vivo treatment monitoring based on these charged nuclear fragments could make ion-beam therapy safer and more efficient. We developed an ion-beam monitoring system based on 28 hybrid silicon pixel detectors (Timepix3) to measure the distribution of fragment origins in three dimensions. The system design choices as well as the ion-beam monitoring performance measurements are presented in this manuscript. A spatial resolution of 4 mm along the beam axis was achieved for the measurement of individual fragment origins. Beam-range shifts of 1.5 mm were identified in a clinically realistic treatment scenario with an anthropomorphic head phantom. The monitoring system is currently being used in a prospective clinical trial at the Heidelberg Ion Beam Therapy Centre for head-and-neck as well as central nervous system cancer patients.
ADVACAM s r o Prague Czech Republic
Clinical Cooperation Unit Radiation Oncology German Cancer Research Centre Heidelberg Germany
Department of Physics and Astronomy Heidelberg University Heidelberg Germany
Department of Radiation Oncology Heidelberg University Hospital Heidelberg Germany
Division of Medical Physics in Radiation Oncology German Cancer Research Centre Heidelberg Germany
Heidelberg Institute for Radiation Oncology Heidelberg Germany
See more in PubMed
Schardt D, Elsässer T, Schulz-Ertner D. Heavy-ion tumor therapy: Physical and radiobiological benefits. Rev. Mod. Phys. 2010;82:383–425. doi: 10.1103/RevModPhys.82.383. DOI
Jäkel O. Physical advantages of particles: Protons and light ions. Br. J. Radiol. 2020;93:20190428. doi: 10.1259/bjr.20190428. PubMed DOI PMC
Durante M, Orecchia R, Loeffler JS. Charged-particle therapy in cancer: Clinical uses and future perspectives. Nat. Rev. Clin. Oncol. 2017;14:483–495. doi: 10.1038/nrclinonc.2017.30. PubMed DOI
Paganetti H. Range uncertainties in proton therapy and the role of Monte Carlo simulations. Phys. Med. Biol. 2012;57:R99. doi: 10.1088/0031-9155/57/11/R99. PubMed DOI PMC
Moyers, M. F. M.: et al. Physical Uncertainties in the Planning and Delivery of Light Ion Beam Treatments. AAPM website Report No. 202, 10.37206/200 (2020).
Albertini F, Matter M, Nenoff L, Zhang Y, Lomax A. Online daily adaptive proton therapy. Br. J. Radiol. 2019;93:20190594. doi: 10.1259/bjr.20190594. PubMed DOI PMC
Amaldi U, Kraft G. Radiotherapy with beams of carbon ions. Rep. Prog. Phys. 2005;68:1861. doi: 10.1088/0034-4885/68/8/R04. DOI
Parodi K, Polf JC. In vivo range verification in particle therapy. Med. Phys. 2018;45:e1036–e1050. doi: 10.1002/mp.12960. PubMed DOI PMC
Moglioni, M.:, et al. In-vivo range verification analysis with in-beam PET data for patients treated with proton therapy at CNAO. Front. Oncol.10.3389/fonc.2022.929949 (2022). PubMed PMC
Berthold J, et al. Detectability of anatomical changes with prompt-gamma imaging: First systematic evaluation of clinical application during prostate-cancer proton therapy. Int. J. Radiat. Oncol. Biol. Phys. 2023;117:718. doi: 10.1016/j.ijrobp.2023.05.002. PubMed DOI
Krimmer J, Dauvergne D, Letang J, Testa E. Prompt-gamma monitoring in hadrontherapy: A review. Nucl. Instrum. Methods Phys. Res., Sect. A. 2018;878:58–73. doi: 10.1016/j.nima.2017.07.063. DOI
Bauer J, et al. Implementation and initial clinical experience of offline PET/CT-based verification of scanned carbon ion treatment. Radiother. Oncol. 2013;107:218–226. doi: 10.1016/j.radonc.2013.02.018. PubMed DOI
Pennazio F, et al. Carbon ions beam therapy monitoring with the INSIDE in-beam PET. Phys. Med. Biol. 2018;63:145018. doi: 10.1088/1361-6560/aacab8. PubMed DOI
Gunzert-Marx K, Iwase H, Schardt D, Simon RS. Secondary beam fragments produced by 200 MeV/u 12C ions in water and their dose contributions in carbon ion radiotherapy. New J. Phys. 2008;10:075003. doi: 10.1088/1367-2630/10/7/075003. DOI
Workman, R. L.: et al. Review of Particle Physics. PTEP 083C01, 10.1093/ptep/ptac097 (2022).
Henriquet P, et al. Interaction vertex imaging (IVI) for carbon ion therapy monitoring: A feasibility study. Phys. Med. Biol. 2012;57:4655. doi: 10.1088/0031-9155/57/14/4655. PubMed DOI
Gwosch K, et al. Non-invasive monitoring of therapeutic carbon ion beams in a homogeneous phantom by tracking of secondary ions. Phys. Med. Biol. 2013;58:3755. doi: 10.1088/0031-9155/58/11/3755. PubMed DOI
Muraro, S.:, et al. Monitoring of Hadrontherapy treatments by means of charged particle detection. Front. Oncol. 10.3389/fonc.2016.00177 (2016). PubMed PMC
Gaa T, et al. Visualization of air and metal inhomogeneities in phantoms irradiated by carbon ion beams using prompt secondary ions. Phys. Med. 2017;38:140–147. doi: 10.1016/j.ejmp.2017.05.055. PubMed DOI
Reinhart AM, Spindeldreier CK, Jakubek J, Martišíková M. Three dimensional reconstruction of therapeutic carbon ion beams in phantoms using single secondary ion tracks. Phys. Med. Biol. 2017;62:4884. doi: 10.1088/1361-6560/aa6aeb. PubMed DOI
Ghesquière-Diérickx L, et al. Investigation of suitable detection angles for carbon-ion radiotherapy monitoring in depth by means of secondary-ion tracking. Front. Oncol. 2021;11:780221. doi: 10.3389/fonc.2021.780221. PubMed DOI PMC
Ghesquière-Diérickx L, et al. Detecting perturbations of a radiation field inside a head-sized phantom exposed to therapeutic carbon-ion beams through charged-fragment tracking. Med. Phys. 2022;49:1776–1792. doi: 10.1002/mp.15480. PubMed DOI
Traini G, et al. Design of a new tracking device for on-line beam range monitor in carbon therapy. Phys. Med. 2017;34:18–27. doi: 10.1016/j.ejmp.2017.01.004. PubMed DOI
Traini G, et al. Review and performance of the Dose Profiler, a particle therapy treatments online monitor. Phys. Med. 2019;65:84–93. doi: 10.1016/j.ejmp.2019.07.010. PubMed DOI
Fischetti, M.:, et al. Inter-fractional monitoring of PubMed PMC
Combs SE, et al. Heidelberg Ion Therapy Center (HIT): Initial clinical experience in the first 80 patients. Acta Oncol. 2010;49:1132–1140. doi: 10.3109/0284186X.2010.498432. PubMed DOI
Haberer T, et al. The Heidelberg ion therapy center. Radiother. Oncol. 2004;73:S186–S190. doi: 10.1016/S0167-8140(04)80046-X. PubMed DOI
Haberer T, Becher W, Schardt D, Kraft G. Magnetic scanning system for heavy ion therapy. Nucl. Instrum. Methods Phys. Res., Sect. A. 1993;330:296–305. doi: 10.1016/0168-9002(93)91335-K. DOI
Kelleter L, et al. Characterisation of a customised 4-chip Timepix3 module for charged-particle tracking. Radiat. Measurem. 2024 doi: 10.1016/j.radmeas.2024.107086. DOI
Berthold J, et al. First-in-human validation of CT-based proton range prediction using prompt gamma imaging in prostate cancer treatments. Int. J. Radiat. Oncol. Biol. Phys. 2021;111:1033–1043. doi: 10.1016/j.ijrobp.2021.06.036. PubMed DOI
Urban M, Doubravová D. Timepix3: Temperature influence on X-ray measurements in counting mode with Si sensor. Radiat. Meas. 2021;141:106535. doi: 10.1016/j.radmeas.2021.106535. DOI
Poikela T, et al. Timepix3: A 65K channel hybrid pixel readout chip with simultaneous ToA/ToT and sparse readout. J. Instrum. 2014;9:C05013. doi: 10.1088/1748-0221/9/05/C05013. DOI
Jakubek, J. Precise energy calibration of pixel detector working in time-over-threshold mode. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 633, S262–S266, 10.1016/j.nima.2010.06.183 (2011). 11th International Workshop on Radiation Imaging Detectors (IWORID).
Kolmogorov AL. Sulla determinazione empirica di una legge di distribuzione. G. Ist. Ital. Attuari. 1933;4:83–91.