Experimental validation of a FLUKA Monte Carlo simulation for carbon-ion radiotherapy monitoring via secondary ion tracking
Language English Country United States Media print-electronic
Document type Journal Article, Validation Study
Grant support
426970603
Deutsche Forschungsgemeinschaft
Nationales Centrum für Tumorerkrankungen Heidelberg
PubMed
39306865
PubMed Central
PMC11656298
DOI
10.1002/mp.17408
Knihovny.cz E-resources
- Keywords
- Monte Carlo simulations, Timepix3, carbon‐ion radiotherapy, charged nuclear fragments, in‐vivo monitoring,
- MeSH
- Phantoms, Imaging MeSH
- Humans MeSH
- Monte Carlo Method * MeSH
- Heavy Ion Radiotherapy * MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Validation Study MeSH
BACKGROUND: In-vivo monitoring methods of carbon ion radiotherapy (CIRT) includes explorations of nuclear reaction products generated by carbon-ion beams interacting with patient tissues. Our research group focuses on in-vivo monitoring of CIRT using silicon pixel detectors. Currently, we are conducting a prospective clinical trial as part of the In-Vivo Monitoring project (InViMo) at the Heidelberg Ion Beam Therapy Center (HIT) in Germany. We are using an innovative, in-house developed, non-contact fragment tracking system with seven mini-trackers based on the Timepix3 technology developed at CERN. PURPOSE: This article focuses on the implementation of the mini-tracker in Monte Carlo (MC) based on FLUKA simulations to monitor secondary charged nuclear fragments in CIRT. The main objective is to systematically evaluate the simulation accuracy for the InViMo project. METHODS: The implementation involved integrating the mini-tracker geometry and the scoring mechanism into the FLUKA MC simulation, utilizing the finely tuned HIT beam line. The systematic investigation included varying mini-tracker angles (from 15 ∘ $15^\circ$ to 45 ∘ $45^\circ$ in 5 ∘ $5^\circ$ steps) during the irradiation of a head-sized phantom with therapeutic carbon-ion pencil beams. To evaluate our implemented FLUKA framework, a comparison was made between the experimental data and data obtained from MC simulations. To ensure the fidelity of our comparison, experiments were performed at the HIT using the parameters and setup established in the simulations. RESULTS: Our research demonstrates high accuracy in reproducing characteristic behaviors and dependencies of the monitoring method in terms of fragment distributions in the mini-tracker, track angles, emission profiles, and fragment numbers. Discrepancies in the number of detected fragments between the experimental data and the data obtained from MC simulations are less than 4% for the angles of interest in the InViMo detection system. CONCLUSIONS: Our study confirms the potential of our simulation framework to investigate the performance of monitoring inter-fractional anatomical changes in patients undergoing CIRT using secondary nuclear charged fragments escaping from the irradiated patient.
ADVACAM s r o Prague Czech Republic
Clinical Cooperation Unit Radiation Oncology German Cancer Research Center DKFZ Heidelberg Germany
Department of Physics and Astronomy Heidelberg University Heidelberg Germany
Department of Radiation Oncology Heidelberg University Hospital Heidelberg Germany
Heidelberg Ion Beam Therapy Center Heidelberg Germany
Medical Faculty Heidelberg University Heidelberg Germany
Medical Faculty Mannheim Heidelberg University Mannheim Germany
See more in PubMed
Jäkel O. Physical advantages of particles: protons and light ions. Br J Radiol. 2020;93:20190428. PubMed PMC
Yokoyama A, Kubota Y, Kawamura H, et al. Impact of inter‐fractional anatomical changes on dose distributions in passive carbon‐ion radiotherapy for prostate cancer: Comparison of vertical and horizontal fields. Front Oncol. 2020;10:1264. PubMed PMC
Houweling AC, Fukata K, Kubota Y, et al. The impact of interfractional anatomical changes on the accumulated dose in carbon ion therapy of pancreatic cancer patients. Radiother Oncol. 2016;119:319‐325. PubMed
Muraro S, Battistoni G, Collamati F, et al. Monitoring of hadrontherapy treatments by means of charged particle detection. Front Oncol. 2016;6:177. PubMed PMC
Gwosch K, Hartmann B, Jakubek J, et al. Non‐invasive monitoring of therapeutic carbon ion beams in a homogeneous phantom by tracking of secondary ions. Phys Med Biol. 2013;58:3755‐3773. PubMed
Olsansky V, Granja C, Oancea C, et al. Spectral‐sensitive proton radiography of thin samples with the pixel detector Timepix3. J Instrum. 2022;17:C04016.
Granja C, Oancea C, Jakubek J, et al. Wide‐range tracking and LET‐spectra of energetic light and heavy charged particles. Nucl Instrum Methods Phys Res, Sect A. 2021;988:164901.
Granja C, Uhlar R, Chuprakov I, et al. Detection of fast neutrons with the pixel detector Timepix3. J Instrum. 2023;18:P01003.
Fálix‐Bautista R, Ghesquière‐Diárickx L, Marek L, et al. Quality assurance method for monitoring of lateral pencil beam positions in scanned carbon‐ion radiotherapy using tracking of secondary ions. Med Phys. 2021;48:4411‐4424. PubMed
Ghesquière‐Diérickx L, Schlechter A, Fálix‐Bautista R, et al. Investigation of Suitable Detection Angles for Carbon‐Ion Radiotherapy Monitoring in Depth by Means of Secondary‐Ion Tracking. Front Oncol. 2021;11:780221. PubMed PMC
Ghesquière‐Diérickx L, Félix‐Bautista R, Schlechter A, et al. Detecting perturbations of a radiation field inside a head‐sized phantom exposed to therapeutic carbon‐ion beams through charged‐fragment tracking. Med Phys. 2022;49:1776‐1792. PubMed
Preliminary AdvaPIX TPX3 Quad Datasheet for ADVACAM s.r.o.; 2022.
Kelleter L, Schmidt S, Subramanian M, et al. Characterisation of a customised 4‐chip Timepix3 module for charged‐particle tracking. Radiat Meas. 2024;173:107086.
Kelleter L, Marek L, Echner G, et al. An in‐vivo treatment monitoring system for ion‐beam radiotherapy based on 28 Timepix3 detectors. Sci Rep. 2024;14(1):15452. PubMed PMC
Ferrari A, Sala P, Fasso A, Ranft J. FLUKA: A multi‐particle transport code Technical Report CERN‐2005‐10, INFN/TC 05/11, SLAC‐R‐773. CERN, INFN, SLAC. October 12 2005.
Böhlen T, Cerutti F, Chin M, et al. The FLUKA Code: Developments and Challenges for High Energy and Medical Applications. Nucl Data Sheets. 2014;120:211‐214.
Augusto R, Bauer J, Bouhali O, et al. An overview of recent developments in FLUKA PET tools. Physica Med. 2018;54:189‐199. PubMed
Battistoni G, Bauer J, Boehlen TT, et al. The FLUKA Code: An Accurate Simulation Tool for Particle Therapy. Front Oncol. 2016;6:116. PubMed PMC
Kozlowska WS, Böhlen TT, Cuccagna C, et al. FLUKA particle therapy tool for Monte Carlo independent calculation of scanned proton and carbon ion beam therapy. Phys Med Biol. 2019;64(7):075012. PubMed
Dedes G, Parodi K. Monte Carlo simulations of particle interactions with tissue in carbon ion therapy. Int J of Part Ther. 2016;2:447‐458. PubMed PMC
Parodi K, Mairani A, Brons S, et al. Monte Carlo simulations to support start‐up and treatment planning of scanned proton and carbon ion therapy at a synchrotron‐based facility. Phys Med Biol. 2012;57:3759‐3784. PubMed
Mirandola A, Molinelli S, Vilches Freixas G, et al. Dosimetric commissioning and quality assurance of scanned ion beams at the Italian National Center for Oncological Hadrontherapy. Med Phys. 2015;42:5287‐5300. PubMed
Schwaab J, Brons S, Fieres J, Parodi K. Experimental characterization of lateral profiles of scanned proton and carbon ion pencil beams for improved beam models in ion therapy treatment planning. Phys Med Biol. 2011;56:7813‐7827. PubMed
RaySearch Laboratories.Accessed in January 2024. https://www.raysearchlabs.com
Lysakovski P, Kopp B, Tessonnier T, et al. Development and validation of MonteRay, a fast Monte Carlo dose engine for carbon ion beam radiotherapy. Med Phys. 2024;51(2):1433‐1449. PubMed
Battistoni G, Cerutti F, Fassò A, et al. The FLUKA code: description and benchmarking. AIP Conf Proc. 2007;896:31‐49.
Böhlen TT, Cerutti F, Dosanjh M, et al. Benchmarking nuclear models of FLUKA and GEANT4 for carbon ion therapy. Phys Med Biol. 2010;55:5833‐5847. PubMed
Mairani A, Brons S, Cerutti F, et al. The FLUKA Monte Carlo code coupled with the local effect model for biological calculations in carbon ion therapy. Phys Med Biol. 2010;55:4273‐4289. PubMed
Kox S, Gamp A, Cherkaoui R, et al. Direct measurements of heavy‐ion total reaction cross sections at 30 and 83 MeV/nucleon. Nucl Phys A. 1984;420:162‐172.
Kox S, Gamp A, Perrin C, et al. Trends of total reaction cross sections for heavy ion collisions in the intermediate energy range. Phys Rev C. 1987;35:1678‐1691. PubMed
Fang DQ, Shen WQ, Feng J, et al. Measurements of total reaction cross sections for some light nuclei at intermediate energies. Phys Rev C. 2000;61:064311.
Sihver L, Tsao CH, Silberberg R, Kanai T, Barghouty AF. Total reaction and partial cross section calculations in proton‐nucleus ( PubMed
Zhang H, Shen W, Ren Z, et al. Measurement of reaction cross section for proton‐rich nuclei (
Takechi M, Fukuda M, Mihara M, et al. Reaction cross sections at intermediate energies and Fermi‐motion effect. Phys Rev C. 2009;79:061601.
Haettner E, Iwase H, Schardt D. Experimental fragmentation studies with 12C therapy beams. Radiat Prot Dosim. 2006;122:485‐487. PubMed
Bauer J, Sommerer F, Mairani A, et al. Integration and evaluation of automated Monte Carlo simulations in the clinical practice of scanned proton and carbon ion beam therapy. Phys Med Biol. 2014;59(16):4635‐4659. PubMed
Mein S, Kopp B, Tessonnier T, et al. Dosimetric validation of Monte Carlo and analytical dose engines with raster‐scanning 1H, 4He, 12C, and 16O ion‐beams using an anthropomorphic phantom. Physica Med. 2019;64:123‐131. PubMed
Tessonnier T, Mairani A, Brons S, et al. Helium ions at the heidelberg ion beam therapy center: comparisons between FLUKA Monte Carlo code predictions and dosimetric measurements. Phys Med Biol. 2017;62:6784‐6803. PubMed
Combs SE, Jäkel O, Haberer T, Debus J. Particle therapy at the Heidelberg Ion Therapy Center (HIT) – Integrated research‐driven university‐hospital‐based radiation oncology service in Heidelberg, Germany. Radiother Oncol. 2010;95:41‐44. PubMed
Haberer T, Becher W, Schardt D, Kraft G. Magnetic scanning system for heavy ion therapy. Nucl Instrum Methods Phys Res, Sect A. 1993;330:296‐305.
Fassò A, Ferrari A, Ranft J, Sala P. FLUKA: Status and Prospective for Hadronic Applications. Proc. MonteCarlo 2000 Conference. 2001;2000:159‐164.
Battistoni G, Cerutti F, Engel R, et al. Recent Developments in the FLUKA Nuclear Reaction Models. Proc. 11th Int Conf Nucl React. 2006:483‐495.
Ferrari A, Ranft J, Roesler S, Sala P. Cascade particles, nuclear evaporation, and residual nuclei in high energy hadron‐nucleus interactions. Zeitschrift fü Physik C. 1996;70:413‐426.
Cavinato M, Fabrici E, Gadioli E, Gadioli Erba E, Galbiati E. Monte Carlo calculations using the Boltzmann Master Equation theory of nuclear reactions. Phys Lett B. 1996;382:1‐5.
Cavinato M, Fabrici E, Gadioli E, Gadioli Erba E, Riva G. Monte Carlo calculations of heavy ion cross‐sections based on the Boltzmann Master equation theory. Nucl Phys A. 2001;679:753‐764.
Fassò A, Ferrari A, Ranft J, Sala P. FLUKA 2021.2 Release Notes. [Online]. Accessed September 16, 2024. http://www.fluka.org/fluka.php?id=release_notes&mm2=3
Fassò A, Ferrari A, Sala PR. Electron‐Photon Transport in FLUKA: Status. In: Kling A, Baräo FJC, Nakagawa M, Távora L, Vaz P, eds. Adv Monte Carlo for Radiat Phy, Part Transp Simul Appl. Springer Berlin Heidelberg; 2001:159‐164.
Vähänen S. Solutions for Flip Chip Bonding of Future Pixel Detectors. In: Proceedings of Science, CERN; 2017, Presented at The 26th International Workshop on Vertex Detectors.
Henriquet P, Testa E, Chevallier M, et al. Interaction vertex imaging (IVI) for carbon ion therapy monitoring: a feasibility study. Phys Med Biol. 2012;57:4655‐4669. PubMed
Cirrone P, Petringa G. Monte Carlo in Heavy Charged Particle Therapy: New Challenges in Ion Therapy. CRC Press; 2023.
Aricò G, Gehrke T, Gallas R, Mairani A, Jäkel O, Martišíková M. Investigation of single carbon ion fragmentation in water and PMMA for hadron therapy. Phys Med Biol. 2019;64(5):055018. PubMed
Schall I, Schardt D, Geissel H, et al. Charge‐changing nuclear reactions of relativistic light‐ion beams (5
Haettner E, Iwase H, Schardt D. Experimental fragmentation studies with 12C therapy beams. Radiat Prot Dosim. 2006;122:485‐487. PubMed
Haettner E, Iwase H, Krämer M, Kraft G, Schardt D. Experimental study of nuclear fragmentation of 200 and 400 MeV/u (12)C ions in water for applications in particle therapy. Phys Med Biol. 2013;58:8265‐8279. PubMed
Golovchenko A, Skvarč J, Yasuda N, et al. Total charge‐changing and partial cross‐section measurements in the reaction of 110MeV/u 12C with paraffin. Radiat Meas. 2001;34:297‐300.
Durante M, Paganetti H. Nuclear physics in particle therapy: a review. Rep Prog Phys. 2016;79:096702. PubMed
Muraro S, Battistoni G, Kraan A. Challenges in Monte Carlo Simulations as Clinical and Research Tool in Particle Therapy: A Review. Front Phys. 2020;8:567800.
Rucinski A, Battistoni G, Collamati F, et al. Secondary radiation measurements for particle therapy applications: Charged particles produced by 4He and 12C ion beams in a PMMA target at large angle. Phys Med Biol. 2018;63:055018. PubMed
Bey A, Ma J, Furutani KM, et al. Nuclear Fragmentation Imaging for Carbon‐Ion Radiation Therapy Monitoring: an In Silico Study. Int J Part Ther. 2021;8(4):25‐36. PubMed PMC