Natural variation of domestication-related genes contributed to latitudinal expansion and adaptation in soybean
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
PubMed
38977969
PubMed Central
PMC11232268
DOI
10.1186/s12870-024-05382-0
PII: 10.1186/s12870-024-05382-0
Knihovny.cz E-zdroje
- Klíčová slova
- Adaptation, Domestication, Flowering time, Latitudinal expansion, Soybean,
- MeSH
- domestikace * MeSH
- fyziologická adaptace genetika MeSH
- genetická variace * MeSH
- Glycine max * genetika fyziologie růst a vývoj MeSH
- haplotypy MeSH
- květy genetika růst a vývoj fyziologie MeSH
- rostlinné geny MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Čína MeSH
Soybean is a major source of protein and edible oil worldwide. Originating from the Huang-Huai-Hai region, which has a temperate climate, soybean has adapted to a wide latitudinal gradient across China. However, the genetic mechanisms responsible for the widespread latitudinal adaptation in soybean, as well as the genetic basis, adaptive differentiation, and evolutionary implications of theses natural alleles, are currently lacking in comprehensive understanding. In this study, we examined the genetic variations of fourteen major gene loci controlling flowering and maturity in 103 wild species, 1048 landraces, and 1747 cultivated species. We found that E1, E3, FT2a, J, Tof11, Tof16, and Tof18 were favoured during soybean improvement and selection, which explained 75.5% of the flowering time phenotypic variation. These genetic variation was significantly associated with differences in latitude via the LFMM algorithm. Haplotype network and geographic distribution analysis suggested that gene combinations were associated with flowering time diversity contributed to the expansion of soybean, with more HapA clustering together when soybean moved to latitudes beyond 35°N. The geographical evolution model was developed to accurately predict the suitable planting zone for soybean varieties. Collectively, by integrating knowledge from genomics and haplotype classification, it was revealed that distinct gene combinations improve the adaptation of cultivated soybeans to different latitudes. This study provides insight into the genetic basis underlying the environmental adaptation of soybean accessions, which could contribute to a better understanding of the domestication history of soybean and facilitate soybean climate-smart molecular breeding for various environments.
Zobrazit více v PubMed
Hymowitz T. On the domestication of the soybean. Econ Bot. 1970;24(4):408–421. doi: 10.1007/BF02860745. DOI
Han Y, Zhao X, Liu D, Li Y, Lightfoot DA, Yang Z, Zhao L, Zhou G, Wang Z, Huang L, Zhang Z, Qiu L, Zheng H, Li W. Domestication footprints anchor genomic regions of agronomic importance in soybeans. New Phytol. 2016;209(2):871–884. doi: 10.1111/nph.13626. PubMed DOI
Guo J, Wang Y, Song C, Zhou J, Qiu L, Huang H, Wang Y. A single origin and moderate bottleneck during domestication of soybean (Glycine max): implications from microsatellites and nucleotide sequences. Ann Bot. 2010;106(3):505–514. doi: 10.1093/aob/mcq125. PubMed DOI PMC
Zhang LX, Wei LIU, Tsegaw M, Xin XU, Qi YP, Sapey E, Liu L, Wu T, Sun S, Han TF. Principles and practices of the photo-thermal adaptability improvement in soybean. J Integr Agric. 2020;19(2):295–310. doi: 10.1016/S2095-3119(19)62850-9. DOI
Bebber DP, Ramotowski MA, Gurr SJ. Crop pests and pathogens move polewards in a warming world. Nat Clim Chang. 2013;3(11):985–988. doi: 10.1038/nclimate1990. DOI
Lu S, Zhao X, Hu Y, Liu S, Nan H, Li X, Fang C, Cao D, Shi X, Kong L, Su T, Zhang F, Li S, Wang Z, Yuan X, Cober ER, Weller JL, Liu B, Hou X, Tian Z, Kong F. Natural variation at the soybean J locus improves adaptation to the tropics and enhances yield. Nat Genet. 2017;49(5):773–779. doi: 10.1038/ng.3819. PubMed DOI
Dong L, Fang C, Cheng Q, Su T, Kou K, Kong L, Zhang C, Li H, Hou Z, Zhang Y, Chen L, Yue L, Wang L, Wang K, Li Y, Gan Z, Yuan X, Weller JL, Lu S, Kong F, Liu B. Genetic basis and adaptation trajectory of soybean from its temperate origin to tropics. Nat Commun. 2021;12(1):5445. doi: 10.1038/s41467-021-25800-3. PubMed DOI PMC
Lu S, Dong L, Fang C, Liu S, Kong L, Cheng Q, Chen L, Su T, Nan H, Zhang D, Zhang L, Wang Z, Yang Y, Yu D, Liu X, Yang Q, Lin X, Tang Y, Zhao X, Yang X, Tian C, Xie Q, Li X, Yuan X, Tian Z, Liu B, Weller JL, Kong F. Stepwise selection on homeologous PRR genes controlling flowering and maturity during soybean domestication. Nat Genet. 2020;52(4):428–436. doi: 10.1038/s41588-020-0604-7. PubMed DOI
Lin X, Liu B, Weller JL, Abe J, Kong F. Molecular mechanisms for the photoperiodic regulation of flowering in soybean. J Integr Plant Biol. 2021;63(6):981–994. doi: 10.1111/jipb.13021. PubMed DOI
Li X, Fang C, Yang Y, Lv T, Su T, Chen L, Nan H, Li S, Zhao X, Lu S, Dong L, Cheng Q, Tang Y, Xu M, Abe J, Hou X, Weller JL, Kong F, Liu B. Overcoming the genetic compensation response of soybean florigens to improve adaptation and yield at low latitudes. Curr Biol. 2021;31(17):3755–3767. doi: 10.1016/j.cub.2021.06.037. PubMed DOI
Xu M, Yamagishi N, Zhao C, Takeshima R, Kasai M, Watanabe S, Kanazawa A, Yoshikawa N, Liu B, Yamada T, Abe J. The soybean-specific maturity gene E1 family of floral repressors controls night-break responses through down-regulation of FLOWERING LOCUS T orthologs. Plant Physiol. 2015;168(4):1735–1746. doi: 10.1104/pp.15.00763. PubMed DOI PMC
Watanabe S, Hideshima R, Xia Z, Tsubokura Y, Sato S, Nakamoto Y, Yamanaka N, Takahashi R, Ishimoto M, Anai T, Tabata S, Harada K. Map-based cloning of the gene associated with the soybean maturity locus E3. Genetics. 2009;182(4):1251–1262. doi: 10.1534/genetics.108.098772. PubMed DOI PMC
Tsubokura Y, Matsumura H, Xu M, Liu B, Nakashima H, Anai T, Kong F, Yuan X, Kanamori H, Katayose Y, Takahashi R, Harada K, Abe J. Genetic variation in soybean at the maturity locus E4 is involved in adaptation to long days at high latitudes. Agronomy. 2013;3(1):117–134. doi: 10.3390/agronomy3010117. DOI
Nan H, Cao D, Zhang D, Li Y, Lu S, Tang L, Yuan X, Liu B, Kong F. GmFT2a and GmFT5a redundantly and differentially regulate flowering through interaction with and upregulation of the bZIP transcription factor GmFDL19 in soybean. PLoS ONE. 2014;9(5):e97669. doi: 10.1371/journal.pone.0097669. PubMed DOI PMC
Dong L, Cheng Q, Fang C, Kong L, Yang H, Hou Z, Yongli Li Y, Nan H, Zhang Y, Chen Q, Zhang C, Kou K, Su T, Wang L, Li S, Li H, Lin X, Tang Y, Zhao X, Lu S, Liu B, Kong F. Parallel selection of distinct Tof5 alleles drove the adaptation of cultivated and wild soybean to high latitudes. Mol Plant. 2022;15(2):308–321. doi: 10.1016/j.molp.2021.10.004. PubMed DOI
Kou K, Yang H, Li H, Fang C, Chen L, Yue L, Nan H, Kong L, Li X, Wang F, Wang J, Du H, Yang Z, Bi Y, Lai Y, Dong L, Cheng Q, Su T, Wang L, Li S, Hou Z, Lu S, Zhang Y, Che Z, Yu D, Zhao X, Liu B, Kong F. A functionally divergent SOC1 homolog improves soybean yield and latitudinal adaptation. Curr Biol. 2022;32(8):1728–1742. doi: 10.1016/j.cub.2022.02.046. PubMed DOI
Khaipho-Burch M, Cooper M, Crossa J, de Leon N, Holland J, Lewis R, McCouch S, Murray SC, Rabbi I, Ronald P, Ross-Ibarra J, Weigel D, Buckler ES. Genetic modification can improve crop yields—but stop overselling it. Nature. 2023;621(7979):470–473. doi: 10.1038/d41586-023-02895-w. PubMed DOI PMC
Tsubokura Y, Watanabe S, Xia Z, Kanamori H, Yamagata H, Kaga A, Katayose Y, Abe J, Ishimoto M, Harada K. Natural variation in the genes responsible for maturity loci E1, E2, E3 and E4 in soybean. Ann Bot. 2014;113(3):429–441. doi: 10.1093/aob/mct269. PubMed DOI PMC
Xu M, Xu Z, Liu B, Kong F, Tsubokura Y, Watanabe S, Xia Z, Harada K, Kanazawa A, Yamada T, Abe J. Genetic variation in four maturity genes affects photoperiod insensitivity and PHYA-regulated post-flowering responses of soybean. BMC Plant Biol. 2013;13(1):1–14. doi: 10.1186/1471-2229-13-91. PubMed DOI PMC
Jiang B, Nan H, Gao Y, Tang L, Yue Y, Lu S, Ma L, Cao D, Sun S, Wang J, Wu C, Yuan X, Hou W, Kong F, Han T, Liu B. Allelic combinations of soybean maturity loci E1, E2, E3 and E4 result in diversity of maturity and adaptation to different latitudes. PLoS ONE. 2014;9(8):e106042. doi: 10.1371/journal.pone.0106042. PubMed DOI PMC
Li C, Li YH, Li YF, Lu HF, Hong HL, Tian Y, Li HY, Zhao T, Zhou XW, Liu J, Zhou X, Jackson SA, Liu B, Qiu LJ. A domestication-associated gene GmPRR3b regulates the circadian clock and flowering time in soybean. Mol Plant. 2020;13:745–759. doi: 10.1016/j.molp.2020.01.014. PubMed DOI
Liu Y, Du H, Li P, Shen Y, Peng H, Liu S, Zhou G, Zhang H, Liu Z, Shi M, Huang X, Li Y, Zhang M, Wang Z, Zhu B, Han B, Liang C, Tian Z. Pan-genome of wild and cultivated soybeans. Cell. 2020;182(1):162–176. doi: 10.1016/j.cell.2020.05.023. PubMed DOI
Fehr WR, Cavines CE. In Special Report 80. Ames, IA: Iowa State University of Science and Technology; 1997. Stages of soybean development.
Endelman JB. Ridge regression and other kernels for genomic selection with R package rrBLUP. Plant Genome. 2021;4(3):250–5.
Browning SR, Browning BL. Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering. Am J Hum Genet. 2007;81(5):1084–1097. doi: 10.1086/521987. PubMed DOI PMC
Kang HM, Sul JH, Service SK, Zaitlen NA, Kong SY, Freimer NB, Sabatti C, Eskin E. Variance component model to account for sample structure in genome-wide association studies. Nat Genet. 2010;42(4):348–354. doi: 10.1038/ng.548. PubMed DOI PMC
Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, de Bakker PIW, Daly MJ, Sham PC. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81(3):559–575. doi: 10.1086/519795. PubMed DOI PMC
Churchill GA, Doerge R. Empirical threshold values for quantitative trait mapping. Genetics. 1994;138(3):963–971. doi: 10.1093/genetics/138.3.963. PubMed DOI PMC
Wei X, Liu K, Zhang Y, Feng Q, Wang L, Zhao Y, Zhu X, Zhu X, Li W, Fan D, Gao Y, Lu Y, Zhang X, Tang X, Zhou C, Zhu C, Liu L, Zhong R, Tian Q, Wen Z, Weng Q, Han B, Huang X, Zhang X. Genetic discovery for oil production and quality in sesame. Nat Commun. 2015;6(1):8609. doi: 10.1038/ncomms9609. PubMed DOI PMC
Caye K, Jumentier B, Lepeule J, François O. LFMM 2: fast and accurate inference of gene-environment associations in genome-wide studies. Mol Biol Evol. 2019;36(4):852–860. doi: 10.1093/molbev/msz008. PubMed DOI PMC
Frichot E, Mathieu F, Trouillon T, Bouchard G, François O. Fast and efficient estimation of individual ancestry coefficients. Genetics. 2014;196(4):973–983. doi: 10.1534/genetics.113.160572. PubMed DOI PMC
Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010;38(16):e164. doi: 10.1093/nar/gkq603. PubMed DOI PMC
Nei M, Li WH. Mathematical model for studying genetic variation in terms of restriction endonucleases. P Natl Acad Sci USA. 1979;76(10):5269–5273. doi: 10.1073/pnas.76.10.5269. PubMed DOI PMC
Librado P, Rozas J. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics. 2009;25(11):1451–1452. doi: 10.1093/bioinformatics/btp187. PubMed DOI
Weir BS, Cockerham CC. Estimating F-statistics for the analysis of population structure. Evolution. 1984;38(6):1358–70. PubMed
Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, Handsaker RE, Lunter G, Marth GT, Sherry ST, McVean G, Durbin R, 1000 Genomes Project Analysis Group The variant call format and VCFtools. Bioinformatics. 2011;27(15):2156–2158. doi: 10.1093/bioinformatics/btr330. PubMed DOI PMC
Excoffier L, Lischer HE. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour. 2010;10(3):564–567. doi: 10.1111/j.1755-0998.2010.02847.x. PubMed DOI
Bandelt HJ, Forster P, Röhl A. Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol. 1999;16(1):37–48. doi: 10.1093/oxfordjournals.molbev.a026036. PubMed DOI
Watterson GA. On the number of segregating sites in genetical models without recombination. Theor Popul Biol. 1975;7(2):256–276. doi: 10.1016/0040-5809(75)90020-9. PubMed DOI
Tajima F. Evolutionary relationship of DNA sequences in finite populations. Genetics. 1983;105(2):437–460. doi: 10.1093/genetics/105.2.437. PubMed DOI PMC
Zhou Z, Jiang Y, Wang Z, Gou Z, Lyu J, Li W, Yu Y, Shu L, Zhao Y, Ma Y, Fang C, Shen Y, Liu T, Li C, Li Q, Wu M, Wang M, Wu Y, Dong Y, Wan W, Wang X, Ding Z, Gao Y, Xiang H, Zhu B, Lee SH, Wang W, Tian Z. Resequencing 302 wild and cultivated accessions identifies genes related to domestication and improvement in soybean. Nat Biotechnol. 2015;33(4):408–414. doi: 10.1038/nbt.3096. PubMed DOI
Nielsen R. Molecular signatures of natural selection. Annu Rev Genet. 2005;39:197–218. doi: 10.1146/annurev.genet.39.073003.112420. PubMed DOI
Biswas S, Akey JM. Genomic insights into positive selection. Trends Genet. 2006;22(8):437–446. doi: 10.1016/j.tig.2006.06.005. PubMed DOI
Fu YX, Li WH. Statistical tests of neutrality of mutations. Genetics. 1993;133(3):693–709. doi: 10.1093/genetics/133.3.693. PubMed DOI PMC
Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics. 1989;123(3):585–595. doi: 10.1093/genetics/123.3.585. PubMed DOI PMC
Gao H, Jin M, Zheng XM, Chen J, Yuan D, Xin Y, Wang M, Huang D, Zhang Z, Zhou K, Sheng P, Ma J, Ma W, Deng H, Jiang L, Liu S, Wang H, Wu C, Yuan L, Wan J. Days to heading 7, a major quantitative locus determining photoperiod sensitivity and regional adaptation in rice. P Natl Acad Sci USA. 2014;111(46):16337–16342. doi: 10.1073/pnas.1418204111. PubMed DOI PMC
Chen Q, Li W, Tan L, Tian F. Harnessing knowledge from maize and rice domestication for new crop breeding. Mol Plant. 2021;14(1):9–26. doi: 10.1016/j.molp.2020.12.006. PubMed DOI
Bay RA, Harrigan RJ, Underwood VL, Gibbs HL, Smith TB, Ruegg K. Genomic signals of selection predict climate-driven population declines in a migratory bird. Science. 2018;359:83–86. doi: 10.1126/science.aan4380. PubMed DOI
Bellis ES, Kelly EA, Lorts CM, Gao H, DeLeo VL, Rouhan G, Budden A, Bhaskara GB, Hu Z, Muscarella R, Timko MP, Nebie B, Runo SM, Chilcoat ND, Juenger TE, Morris GP, dePamphilis CW, Lasky JR. Genomics of sorghum local adaptation to a parasitic plant. P Natl Acad Sci USA. 2020;117:4243–4251. doi: 10.1073/pnas.1908707117. PubMed DOI PMC
Li J, Chen GB, Rasheed A, Li D, Sonder K, Espinosa CZ, Wang JK, Costich DE, Schnable PS, Hearne SJ, Li HH. Identifying loci with breeding potential across temperate and tropical adaptation via EigenGWAS and EnvGWAS. Mol Ecol. 2019;28(15):3544–3560. doi: 10.1111/mec.15169. PubMed DOI PMC
Meuwissen THE, Hayes BJ, Goddard ME. Prediction of total genetic value using genome-wide dense marker maps. Genetics. 2001;157:1819–1829. doi: 10.1093/genetics/157.4.1819. PubMed DOI PMC
Rice B, Lipka AE. Evaluation of RR-BLUP genomic selection models that incorporate peak genome-wide association study signals in maize and sorghum. Plant Genome. 2019;12(1):180052. doi: 10.3835/plantgenome2018.07.0052. PubMed DOI
Mackay TFC. The genetic architecture of quantitative traits. Annu Rev Genet. 2001;35:303–339. doi: 10.1146/annurev.genet.35.102401.090633. PubMed DOI