Early agriculture and crop transitions at Kakapel Rockshelter in the Lake Victoria region of eastern Africa
Language English Country Great Britain, England Media print-electronic
Document type Journal Article, Historical Article
Grant support
Max-Planck-Institut für Menschheitsgeschichte
PubMed
38981530
PubMed Central
PMC11335020
DOI
10.1098/rspb.2023.2747
Knihovny.cz E-resources
- Keywords
- East Africa, Eleusine coracana, Sorghum bicolor, Vigna unguiculata, agriculture, archaeology,
- MeSH
- Archaeology * MeSH
- Radiometric Dating MeSH
- Crops, Agricultural * MeSH
- Agriculture * MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Historical Article MeSH
- Geographicals
- Kenya MeSH
- Africa, Eastern MeSH
The histories of African crops remain poorly understood despite their contemporary importance. Integration of crops from western, eastern and northern Africa probably first occurred in the Great Lakes Region of eastern Africa; however, little is known about when and how these agricultural systems coalesced. This article presents archaeobotanical analyses from an approximately 9000-year archaeological sequence at Kakapel Rockshelter in western Kenya, comprising the largest and most extensively dated archaeobotanical record from the interior of equatorial eastern Africa. Direct radiocarbon dates on carbonized seeds document the presence of the West African crop cowpea (Vigna unguiculata (L.) Walp) approximately 2300 years ago, synchronic with the earliest date for domesticated cattle (Bos taurus). Peas (Pisum sativum L. or Pisum abyssinicum A. Braun) and sorghum (Sorghum bicolor (L.) Moench) from the northeast and eastern African finger millet (Eleusine coracana (L.) Gaertn.) are incorporated later, by at least 1000 years ago. Combined with ancient DNA evidence from Kakapel and the surrounding region, these data support a scenario in which the use of diverse domesticated species in eastern Africa changed over time rather than arriving and being maintained as a single package. Findings highlight the importance of local heterogeneity in shaping the spread of food production in sub-Saharan Africa.
Cleveland Museum of Natural History Cleveland OH USA
Department of Anthropology Stony Brook University Stony Brook NY USA
Department of Anthropology University of North Carolina at Charlotte Charlotte NC USA
Department of Anthropology University of Pittsburgh WWPH 3302 S Bouquet St Pittsburgh PA 15260 USA
Department of Anthropology University of Tennessee Knoxville TN USA
Department of Archaeology Max Planck Institute of Geoanthropology Jena Germany
Department of Archaeology National Museums of Kenya Nairobi Kenya
Department of Asian and North African Studies Ca'Foscari University of Venice Venice Italy
Department of Earth Sciences National Museums of Kenya Nairobi Kenya
Faculty of Archaeology University of Warsaw Warsaw Poland
Faculty of Arts Masaryk University Brno Czech Republic
Griffith Sciences Griffith University Brisbane Australia
Kakapel National Monument National Museums of Kenya Amagoro Kenya
School of Life Sciences Fudan University Shanghai People's Republic of China
School of Social Science University of Queensland Brisbane Australia
See more in PubMed
Marshall F, Hildebrand E. 2002. Cattle before crops: the beginnings of food production in Africa. J. World Prehist. 16 , 99–143. (10.1023/A:1019954903395) DOI
Smith AB. 1992. Origins and spread of pastoralism in Africa. Annu. Rev. Anthropol. 21 , 125–141. (10.1146/annurev.an.21.100192.001013) DOI
Fuller D, Hildebrand E. 2013. Domesticating plants in Africa. In The Oxford handbook of African archaeology (eds Mitchell P, Lane P), pp. 507–526. Oxford, UK: Oxford University Press.
Crowther A, Prendergast ME, Fuller DQ, Boivin N. 2018. Subsistence mosaics, forager-farmer interactions, and the transition to food production in eastern Africa. Quat. Int. 489 , 101–120. (10.1016/j.quaint.2017.01.014) DOI
Giblin JD, Fuller DQ. 2011. First and second millennium A.D. agriculture in Rwanda: archaeobotanical finds and radiocarbon dates from seven sites. Veg. Hist. Archaeobot. 20 , 253–265. (10.1007/s00334-011-0288-0) DOI
Schoenbrun DL. 1993. We are what we eat: ancient agriculture between the great lakes. J. Afr. Hist 34 , 1–31. (10.1017/S0021853700032989) DOI
Lander F, Russell T. 2018. The archaeological evidence for the appearance of pastoralism and farming in southern Africa. PLoS One 13 , e0198941. (10.1371/journal.pone.0198941) PubMed DOI PMC
Schoenbrun DL. 1993. Cattle herds and banana gardens: the historical geography of the western Great Lakes region,ca AD 8001500. Afr. Archaeol. Rev. 11–11 , 39–72. (10.1007/BF01118142) DOI
Boivin NL, Crowther A, Prendergast ME, Fuller DQ. 2014. Indian Ocean food globalisation and Africa. Afr. Archaeol. Rev. 31 , 547–581. (10.1007/s10437-014-9173-4) DOI
Beldados A, Ruiz-Giralt A, Lancelotti C, Meresa Y, D’Andrea AC. 2023. Pre-Aksumite plant husbandry in the Horn of Africa. Veg. Hist. Archaeobot. 32 , 635–654. (10.1007/s00334-023-00949-7) DOI
Walshaw SC. 2010. Converting to rice: urbanization, Islamization and crops on Pemba Island, Tanzania, AD 700–1500. World Archaeol. 42 , 137–154. (10.1080/00438240903430399) DOI
Quintana Morales EM, et al. . 2022. Diet, economy, and culinary practices at the height of precolonial Swahili urbanism. J. Anthropol. Archaeol. 66 , 101406. (10.1016/j.jaa.2022.101406) DOI
Ehret C. 1984. Historical/linguistic evidence for early African food production. In From hunters to farmers (eds Clark JD, Brandt SA), pp. 26–36. Berkeley, CA: University of California Press. (10.1525/9780520407213) DOI
Ambrose SH. 1982. Archaeological and linguistic Reconstructions of history in East Africa. In In the archaeological and linguistic reconstruction of African history (eds Ehret C, Posnansky M), pp. 104–157. Berkeley, CA: University of California Press. (10.1525/9780520314757) DOI
Diamond J, Bellwood P. 2003. Farmers and their languages: the first expansions. Science 300 , 597–603. (10.1126/science.1078208) PubMed DOI
Isern N, Fort J. 2019. Assessing the importance of cultural diffusion in the Bantu spread into southeastern Africa. PLoS One 14 , e0215573. (10.1371/journal.pone.0215573) PubMed DOI PMC
Kusimba CM, Kusimba SB. 2005. Mosaics and interactions: East Africa, 2000 BP to the present. In African archaeology: a critical introduction (ed. Stahl AB), pp. 392–419. (10.9783/9781934536261). See https://www.degruyter.com/document/doi/10.9783/9781934536261/html. DOI
Young R, Thompson G. 1999. Missing plant foods? Where is the archaeobotanical evidence for sorghum and finger millet in East Africa? In The exploitation of plant resources in ancient Africa (ed. Van der Veen M), pp. 63–72. New York, NY: Kluwer. (10.1007/978-1-4757-6730-8) DOI
Lane PJ. 2004. The ‘moving frontier’ and the transition to food production in Kenya. Azania 39 , 243–264. (10.1080/00672700409480402) DOI
Lane P, Ashley CZ, Seitsonen O, Harvey P, Mire S, Odede F. 2007. The transition to farming in eastern Africa: new faunal and dating evidence from Wadh Lang’o and Usenge, Kenya. Antiquity 81 , 62–81. (10.1017/S0003598X00094849) DOI
Prendergast ME, et al. . 2019. Ancient DNA reveals a multistep spread of the first herders into sub-Saharan Africa. Science 365 , eaaw6275. (10.1126/science.aaw6275) PubMed DOI PMC
Wang K, et al. . 2020. Ancient genomes reveal complex patterns of population movement, interaction, and replacement in sub-Saharan Africa. Sci. Adv. 6 , 1–15. (10.1126/sciadv.aaz0183) PubMed DOI PMC
Skoglund P, et al. . 2017. Reconstructing prehistoric African population structure. Cell 171 , 59–71.(10.1016/j.cell.2017.08.049) PubMed DOI PMC
Li S, Schlebusch C, Jakobsson M. 2014. Genetic variation reveals large-scale population expansion and migration during the expansion of Bantu-speaking peoples. Proc. R. Soc. B 281 , 20141448. (10.1098/rspb.2014.1448) PubMed DOI PMC
Choudhury A, Sengupta D, Ramsay M, Schlebusch C. 2021. Bantu-speaker migration and admixture in southern Africa. Hum. Mol. Genet. 30 , R56–R63. (10.1093/hmg/ddaa274) PubMed DOI PMC
Ehret C. 2001. Bantu expansions: re-envisioning a central problem of early African history. Int. J. Afr. Hist. Stud. 34 , 5–41. (10.2307/3097285) DOI
Grollemund R, Branford S, Bostoen K, Meade A, Venditti C, Pagel M. 2015. Bantu expansion shows that habitat alters the route and pace of human dispersals. Proc. Natl Acad. Sci. USA 112 , 13296–13301. (10.1073/pnas.1503793112) PubMed DOI PMC
Russell T, Silva F, Steele J. 2014. Modelling the spread of farming in the Bantu-speaking regions of Africa: an archaeology-based phylogeography. PLoS One 9 , e87854. (10.1371/journal.pone.0087854) PubMed DOI PMC
D’Andrea AC, Kahlheber S, Logan AL, Watson DJ. 2007. Early domesticated cowpea (Vigna unguiculata) from Central Ghana. Antiquity 81 , 686–698. (10.1017/S0003598X00095661) DOI
Herniter IA, Muñoz‐Amatriaín M, Close TJ. 2020. Genetic, textual, and archeological evidence of the historical global spread of cowpea (Vigna unguiculata[L.] Walp.). Legume Sci. 2 , e57. (10.1002/leg3.57) DOI
Prendergast ME. 2010. Kansyore fisher-foragers and transitions to food production in East Africa: the view from Wadh Lang’o, Nyanza Province, Western Kenya. Azania 45 , 83–111. (10.1080/00672700903291765) DOI
Clark JD, Brandt SA. 1984. From hunters to farmers: the causes and consequences of food production in Africa. Berkeley, CA: University of California Press.
Robertshaw P. 1991. Gogo Falls: excavations at a complex archaeological site east of Lake Victoria. Azania 26 , 63–195. (10.1080/00672709109511425) DOI
Marshall FB, Stewart KM. 1995. Hunting, fishing and herding pastoralists of western Kenya: the fauna from Gogo Falls. Archaeozool. 7 , 7–27.
Goldstein S, O’Brien K, Adum A, Mwangi J. 2023. A multi-component forager-to-herder sequence at Kapsoo Rockshelter (Chebinyiny) on the Uasin Gishu Plateau, Kenya. Azania 58 , 490–516. (10.1080/0067270X.2023.2259751) DOI
Odak O. 1977. Kakapeli and other recently discovered rock paintings in the Western Highlands of Kenya. Azania 12 , 187–192. (10.1080/00672707709511254) DOI
Odak O. 1980. Recent fieldwork in west Kenya. Nyame Akuma 16 , 10–14.
Martin AC, Barkley WD. 1961. Seed identification manual. Berkeley, CA: University of California Press. (10.1525/9780520318724) DOI
Schneider CA, Rasband WS, Eliceiri KW. 2012. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9 , 671–675. (10.1038/nmeth.2089) PubMed DOI PMC
Xu L, Roberts ML, Elder KL, Hansman RL, Gagnon AR, Kurz MD. 2022. Radiocarbon in dissolved organic carbon by uv oxidation: an update of procedures and blank characterization at NOSAMS. Radiocarbon 64 , 195–199. (10.1017/RDC.2022.4) DOI
Xu L, Roberts ML, Elder KL, Kurz MD, McNichol AP, Reddy CM, Ward CP, Hanke UM. 2021. Radiocarbon in dissolved organic carbon by uv oxidation: Procedures and blank characterization at nosams. Radiocarbon 63 , 357–374. (10.1017/RDC.2020.102) DOI
Bronk Ramsey C. 2001. Development of the radiocarbon calibration program. Radiocarbon 43 , 355–363. (10.1017/S0033822200038212) DOI
Hogg AG, et al. . 2020. SHCal20 Southern Hemisphere Calibration, 0–55,000 Years cal BP. Radiocarbon 62 , 759–778. (10.1017/RDC.2020.59) DOI
Welker F, et al. . 2016. Palaeoproteomic evidence identifies archaic hominins associated with the Châtelperronian at the Grotte du Renne. Proc. Natl Acad. Sci. USA 113 , 11162–11167. (10.1073/pnas.1605834113) PubMed DOI PMC
Buckley M, Collins M, Thomas‐Oates J, Wilson JC. 2009. Species identification by analysis of bone collagen using matrix‐assisted laser desorption/ionisation time‐of‐flight mass spectrometry. Rapid Commun. Mass Spectrom. 23 , 3843–3854. (10.1002/rcm.4316) PubMed DOI
Desmond A, Barton N, Bouzouggar A, Douka K, Fernandez P, Humphrey L, Morales J, Turner E, Buckley M. 2018. ZooMS identification of bone tools from the North African Later Stone Age. J. Archaeol. Sci. 98 , 149–157. (10.1016/j.jas.2018.08.012) DOI
Janzen A, et al. . 2021. Distinguishing African bovids using Zooarchaeology by Mass Spectrometry (ZooMS): new peptide markers and insights into Iron Age economies in Zambia. PLoS One 16 , e0251061. (10.1371/journal.pone.0251061) PubMed DOI PMC
Bradfield J, Forssman T, Spindler L, Antonites AR. 2019. Identifying the animal species used to manufacture bone arrowheads in South Africa. Archaeol. Anthropol. Sci. 11 , 2419–2434. (10.1007/s12520-018-0688-5) DOI
Bronk Ramsey C. 2009. Bayesian analysis of radiocarbon dates. Radiocarbon 51 , 337–360. (10.2458/azu_uapress_9780816530595-ch039) DOI
Ramsey CB. 2017. Methods for summarizing radiocarbon datasets. Radiocarbon 59 , 1809–1833. (10.1017/RDC.2017.108) DOI
Lane PJ, Ashley CZ, Oteyo G. 2006. New dates for Kansyore and Urewe Wares from Northern Nyanza, Kenya. Azania 41 , 123–138. (10.1080/00672700609480438) DOI
Dale D, Ashley CZ. 2010. Holocene hunter-fisher-gatherer communities: new perspectives on Kansyore Using communities of Western Kenya. Azania 45 , 24–48. (10.1080/00672700903291716) DOI
Prendergast ME. 2009. Forager variability and transitions to food production in secondary settings: Kansyore and pastoral Neolithic economies in East Africa. PhD thesis, Harvard University. (10.1080/00671990903052330) DOI
Miller NF. 1988. Ratios in Paleoethnobotanical analysis. in current Paleoethnobotany: Analytical methods and cultural interpretations of archaeological plant remains, (eds Hastorf C, Popper V), pp. 72–85. Chicago, IL: University of Chicago Press.
Conservetoire et Jardin botaniques, Geneve . 2024. African plants database. See https://africanplantdatabase.ch.
Marshall F. 2001. Agriculture and use of wild and weedy greens by the Piik AP Oom okiek of Kenya. Econ. Bot. 55 , 32–46. (10.1007/BF02864544) DOI
Clist B. 1987. A critical reappraisal of the chronological framework for the Early Urewe Iron Age industry. Muntu 6 , 36–62.
Phillipson DW. 1975. The chronology of the iron age in Bantu Africa. J. Afr. Hist 16 , 321–342. (10.1017/S0021853700014298) DOI
Xiong H, et al. . 2016. Genetic diversity and population structure of Cowpea (Vigna unguiculata L. Walp). PLoS One 11 , e0160941. (10.1371/journal.pone.0160941) PubMed DOI PMC
Ehret C. 1982. Linguistic inferences about early Bantu history. In The archaeological and linguistic reconstruction of African history (eds Ehret C, Posnansky M), pp. 57–77. Los Angeles: University of California Press. (10.1525/9780520314757) DOI
Weeden NF. 2018. Domestication of pea (Pisum sativum L.): the case of the Abyssinian Pea. Front. Plant Sci 9 , 352614. (10.3389/fpls.2018.00515) PubMed DOI PMC
Hellwig T, Abbo S, Ophir R. 2022. Phylogeny and disparate selection signatures suggest two genetically independent domestication events in pea (Pisum L.). Plant J. 110 , 419–439. (10.1111/tpj.15678) PubMed DOI PMC
Clapham AJ, Rowley-Conwy PA. 2007. New discoveries at Qasr Ibrim, lower Nubia. In Fields of change: progress in African Archaeobotany (ed. Cappers RTJ), pp. 157–164. Groningen, The Netherlands: Barkhuis & Groningen University Library.
Hilu KW, de Wet JMJ, Harlan JR. 1979. Archaeobotanical studies of Eleusine coracana ssp. Coracana (finger millet). Am. J. Bot. 66 , 330–333. (10.1002/j.1537-2197.1979.tb06231.x) DOI
Lane PJ. 2013. The archaeology of pastoralism and stock-keeping in East Africa. (eds Mitchell P, Lane P). Oxford, UK: Oxford University Press. (10.1093/oxfordhb/9780199569885.013.0040) DOI
Marshall FB. 1990. Origins of specialized pastoral production in East Africa. Am. Anthropol. 92 , 873–894. (10.1525/aa.1990.92.4.02a00020) DOI
Robertshaw P (ed). 1990. Early pastoralists of southwestern Kenya. Nairobi, Kenya: Memoirs of the British Institute in Eastern Africa.
Alemseged B, Manzo A, Murphy C, Stevens CJ, Fuller DQ. 2018. Evidence of sorghum cultivation and possible pearl millet in the second millennium BC at Kassala, Eastern Sudan. In Plants and people in the Afrcan past (eds Mercuri AM, D’Andrea C, Fornaciari R, Hohn A), pp. 505–528. Cham: Springer.
Fuller DQ, Stevens CJ. 2018. Sorghum domestication and diversification: a current Archaeobotanical perspective. In Plants and people in the African past, pp. 427–452.
Mueller NG, Goldstein ST, Odeny DA, Boivin NL. 2021. Variability and preservation biases in the Archaeobotanical record of finger millet (Eleusine Coracana): evidence from iron age Kenya. Veg. Hist. Archaeobot. 31 , 279–290. (10.1007/s00334-021-00853-y) DOI
Heckmann M, Muiruri V, Boom A, Marchant R. 2014. Human–environment interactions in an agricultural landscape: a 1400-yr sediment and pollen record from North Pare, NE Tanzania. Palaeogeogr. Palaeoclimatol. Palaeoecol. 406 , 49–61. (10.1016/j.palaeo.2014.04.005) DOI
Kiage LM, Liu K biu. 2009. Palynological evidence of climate change and land degradation in the Lake Baringo area, Kenya, East Africa, since AD 1650. Palaeogeogr. Palaeoclimatol. Palaeoecol. 279 , 60–72. (10.1016/j.palaeo.2009.05.001) DOI
Krapf J. 1858. Reisen in Ost-Afrika: Ausgeführt in den Jahren 1837-1855. Kornthal, Germany: Im Selbstverlage des Verfassers.
Goldstein ST, et al. . 2021. Revisiting Kalundu Mound, Zambia: implications for the timing of social and subsistence transitions in iron age Southern Africa. Afr. Archaeol. Rev. 38 , 625–655. (10.1007/s10437-021-09440-y) DOI
de Luna KM, Fleisher JB. 2018. The politics of food collection in South central Africa. In Speaking with substance: methods of language and materials in African history, pp. 31–46. Cham, Switzerland: Springer Cham. (10.1007/978-3-319-91036-9) DOI
Frahm E, Goldstein ST, Tryon CA. 2017. Late Holocene forager-fisher and pastoralist interactions along the Lake Victoria shores, Kenya: perspectives from portable XRF of obsidian artifacts. J. Archaeol. Sci. Rep. 11 , 717–742. (10.1016/j.jasrep.2017.01.001) DOI
Robertson JH. 2000. Early iron age archaeology in Central Zambia. Azania 35 , 147–182. (10.1080/00672700009511600) DOI
Goldstein ST, et al. . 2022. Excavations at the iron age village site of Fibobe II, Central Zambia. J. Afr. Archaeol. 20 , 21–39. (10.1163/21915784-bja10012) DOI
Mitchell P. 2002. The archaeology of southern Africa. Cambridge, UK: Cambridge University Press.
Stahl AB. 2004. Political economic mosaics: archaeology of the last two millennia in Tropical Sub-Saharan Africa. Annu. Rev. Anthropol. 33 , 145–172. (10.1146/annurev.anthro.33.070203.143841) DOI
Lane PJ. 2023. Hearth and home in the iron age of Eastern Africa: Ethnographic models, historical linguistics and archaeological evidence. S. Afr. Humanit. 36 , 181–200. https://www.sahumanities.org/index.php/sah/article/view/498
Logan AL. 2016. 'Why can’t people feed themselves?': archaeology as alternative archive of food security in Banda, Ghana. Am. Anthropol. 118 , 508–524. (10.1111/aman.12603) DOI
Goldstein ST, Mueller NG, Janzen A, Ogola C, Dal Martello R, Fernandes Ret al. . 2024. Supplementary material from: Early agriculture and crop transitions at Kakapel Rockshelter in the Lake Victoria region of Eastern Africa. Figshare. (10.6084/m9.figshare.c.7313758) PubMed DOI PMC