Structure-based prediction of T cell receptor recognition of unseen epitopes using TCRen

. 2024 Jul ; 4 (7) : 510-521. [epub] 20240710

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38987378
Odkazy

PubMed 38987378
DOI 10.1038/s43588-024-00653-0
PII: 10.1038/s43588-024-00653-0
Knihovny.cz E-zdroje

T cell receptor (TCR) recognition of foreign peptides presented by major histocompatibility complex protein is a major event in triggering the adaptive immune response to pathogens or cancer. The prediction of TCR-peptide interactions has great importance for therapy of cancer as well as infectious and autoimmune diseases but remains a major challenge, particularly for novel (unseen) peptide epitopes. Here we present TCRen, a structure-based method for ranking candidate unseen epitopes for a given TCR. The first stage of the TCRen pipeline is modeling of the TCR-peptide-major histocompatibility complex structure. Then a TCR-peptide residue contact map is extracted from this structure and used to rank all candidate epitopes on the basis of an interaction score with the target TCR. Scoring is performed using an energy potential derived from the statistics of TCR-peptide contact preferences in existing crystal structures. We show that TCRen has high performance in discriminating cognate versus unrelated peptides and can facilitate the identification of cancer neoepitopes recognized by tumor-infiltrating lymphocytes.

Zobrazit více v PubMed

Qi, Q. et al. Diversity and clonal selection in the human T-cell repertoire. Proc. Natl Acad. Sci. USA 111, 13139–13144 (2014). DOI

Mora, T. & Walczak, A. M. How many different clonotypes do immune repertoires contain? Curr. Opin. Syst. Biol. 18, 104–110 (2019). DOI

Valkiers, S. et al. Recent advances in T-cell receptor repertoire analysis: bridging the gap with multimodal single-cell RNA sequencing. ImmunoInformatics 5, 100009 (2022). DOI

Rosati, E. et al. Overview of methodologies for T-cell receptor repertoire analysis. BMC Biotechnol. 17, 1–16 (2017). DOI

Joglekar, A. V. & Li, G. T cell antigen discovery. Nat. Methods 18, 873–880 (2020). DOI

Lin, X. et al. Rapid assessment of T-cell receptor specificity of the immune repertoire. Nat. Comput. Sci. 1, 362–373 (2021). DOI

Singh, N. K. et al. Emerging concepts in TCR specificity: rationalizing and (maybe) predicting outcomes. J. Immunol. 199, 2203–2213 (2017). DOI

Hudson, D., Fernandes, R. A., Basham, M., Ogg, G. & Koohy, H. Can we predict T cell specificity with digital biology and machine learning? Nat. Rev. Immunol. 23, 511–521 (2023). DOI

Gielis, S. et al. Detection of enriched T cell epitope specificity in full T cell receptor sequence repertoires. Front. Immunol. 10, 2820 (2019). DOI

Montemurro, A. et al. NetTCR-2.0 enables accurate prediction of TCR–peptide binding by using paired TCRα and β sequence data. Commun. Biol. 4, 1060 (2021). DOI

Mayer-Blackwell, K. et al. TCR meta-clonotypes for biomarker discovery with tcrdist3 enabled identification of public, HLA-restricted clusters of SARS-CoV-2 TCRs. eLife 10, e68605 (2021). DOI

Weber, A., Born, J. & Rodriguez Martínez, M. TITAN: T-cell receptor specificity prediction with bimodal attention networks. Bioinformatics 37, i237–i244 (2021). DOI

Springer, I., Tickotsky, N. & Louzoun, Y. Contribution of T cell receptor alpha and beta CDR3, MHC typing, V and J genes to peptide binding prediction. Front. Immunol. 12, 664514 (2021). DOI

Bagaev, D. V. et al. VDJdb in 2019: database extension, new analysis infrastructure and a T-cell receptor motif compendium. Nucleic Acids Res. 48, D1057–D1062 (2020). DOI

Tickotsky, N., Sagiv, T., Prilusky, J., Shifrut, E. & Friedman, N. McPAS-TCR: a manually curated catalogue of pathology-associated T cell receptor sequences. Bioinformatics 33, 2924–2929 (2017). DOI

Berman, H. M. et al. The protein data bank. Nucleic Acids Res. 28, 235–242 (2000). DOI

Jensen, K. K. et al. TCRpMHCmodels: structural modelling of TCR–pMHC class I complexes. Sci. Rep. 9, 14530 (2019). DOI

Meysman, P. et al. Benchmarking solutions to the T-cell receptor epitope prediction problem: IMMREP22 workshop report. ImmunoInformatics 9, 100024 (2023). DOI

Jiang, Y., Huo, M. & Cheng Li, S. TEINet: a deep learning framework for prediction of TCR-epitope binding specificity. Brief. Bioinform. 24, bbad086 (2023). DOI

Cai, M., Bang, S., Zhang, P. & Lee, H. ATM-TCR: TCR–epitope binding affinity prediction using a multi-head self-attention model. Front. Immunol. 13, 893247 (2022). DOI

Gao, Y. et al. Pan-Peptide Meta Learning for T-cell receptor–antigen binding recognition. Nat. Mach. Intell. 5, 236–249 (2023). DOI

Keskin, O., Bahar, I., Badretdinov, A. Y., Ptitsyn, O. B. & Jernigan, R. L. Empirical solvent-mediated potentials hold for both intra-molecular and inter-molecular inter-residue interactions. Protein Sci. 7, 2578–2586 (1998). DOI

Miyazawa, S. & Jernigan, R. L. Estimation of effective interresidue contact energies from protein crystal structures: quasi-chemical approximation. Macromolecules 18, 534–552 (1985). DOI

Vita, R. et al. The Immune Epitope Database (IEDB): 2018 update. Nucleic Acids Res. 47, D339–D343 (2019). DOI

Birnbaum, M. E. et al. Deconstructing the peptide-MHC specificity of T cell recognition. Cell 157, 1073–1087 (2014). DOI

Alford, R. F. et al. The rosetta all-atom energy function for macromolecular modeling and design. J. Chem. Theory Comput. 13, 3031–3048 (2017). DOI

Kumari, R. & Kumar, R. Open source drug discovery consortium, A. Lynn, g_mmpbsa–a GROMACS tool for high-throughput MM-PBSA calculations. J. Chem. Inf. Model. 54, 1951–1962 (2014). DOI

Gee, M. H. et al. Antigen identification for orphan T cell receptors expressed on tumor-infiltrating lymphocytes. Cell 172, 549–563.e16 (2018). DOI

Atchley, W. R., Zhao, J., Fernandes, A. D. & Drüke, T. Solving the protein sequence metric problem. Proc. Natl Acad. Sci. USA 102, 6395–6400 (2005). DOI

Kosmrlj, A., Jha, A. K., Huseby, E. S., Kardar, M. & Chakraborty, A. K. How the thymus designs antigen-specific and self-tolerant T cell receptor sequences. Proc. Natl Acad. Sci. USA 105, 16671–16676 (2008). DOI

Bobisse, S. et al. Sensitive and frequent identification of high avidity neo-epitope specific CD8 DOI

Devlin, J. R. et al. Structural dissimilarity from self drives neoepitope escape from immune tolerance. Nat. Chem. Biol. 16, 1269–1276 (2020). DOI

Bigot, J. et al. Splicing patterns in SF3B1-mutated uveal melanoma generate shared immunogenic tumor-specific neoepitopes. Cancer Discov. 11, 1938–1951 (2021). DOI

Bradley, P. Structure-based prediction of T cell receptor:peptide-MHC interactions. eLife 12, e82813 (2023). DOI

Abramson, J. et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 630, 493–500 (2024). DOI

Yin, R. et al. TCRmodel2: high-resolution modeling of T cell receptor recognition using deep learning. Nucleic Acids Res. https://doi.org/10.1093/nar/gkad356 (2023). DOI

Tubiana, J., Schneidman-Duhovny, D. & Wolfson, H. J. ScanNet: an interpretable geometric deep learning model for structure-based protein binding site prediction. Nat. Methods 19, 730–739 (2022). DOI

Gainza, P. et al. Deciphering interaction fingerprints from protein molecular surfaces using geometric deep learning. Nat. Methods 17, 184–192 (2020). DOI

Reynisson, B., Alvarez, B., Paul, S., Peters, B. & Nielsen, M. NetMHCpan-4.1 and NetMHCIIpan-4.0: improved predictions of MHC antigen presentation by concurrent motif deconvolution and integration of MS MHC eluted ligand data. Nucleic Acids Res. 48, W449–W454 (2020). DOI

Riley, T. P. et al. T cell receptor cross-reactivity expanded by dramatic peptide-MHC adaptability. Nat. Chem. Biol. 14, 934–942 (2018). DOI

Karnaukhov, V. Structure-based prediction of T-cell receptor recognition of unseen epitopes using residue-level pairwise statistical potential TCRen. Zenodo https://doi.org/10.5281/zenodo.11129800 (2024).

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...