Structure-based prediction of T cell receptor recognition of unseen epitopes using TCRen
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
38987378
DOI
10.1038/s43588-024-00653-0
PII: 10.1038/s43588-024-00653-0
Knihovny.cz E-zdroje
- MeSH
- epitopy T-lymfocytární imunologie chemie MeSH
- epitopy imunologie chemie MeSH
- hlavní histokompatibilní komplex imunologie MeSH
- konformace proteinů MeSH
- lidé MeSH
- molekulární modely MeSH
- nádory imunologie MeSH
- peptidy imunologie chemie MeSH
- receptory antigenů T-buněk * imunologie chemie metabolismus MeSH
- tumor infiltrující lymfocyty imunologie metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- epitopy T-lymfocytární MeSH
- epitopy MeSH
- peptidy MeSH
- receptory antigenů T-buněk * MeSH
T cell receptor (TCR) recognition of foreign peptides presented by major histocompatibility complex protein is a major event in triggering the adaptive immune response to pathogens or cancer. The prediction of TCR-peptide interactions has great importance for therapy of cancer as well as infectious and autoimmune diseases but remains a major challenge, particularly for novel (unseen) peptide epitopes. Here we present TCRen, a structure-based method for ranking candidate unseen epitopes for a given TCR. The first stage of the TCRen pipeline is modeling of the TCR-peptide-major histocompatibility complex structure. Then a TCR-peptide residue contact map is extracted from this structure and used to rank all candidate epitopes on the basis of an interaction score with the target TCR. Scoring is performed using an energy potential derived from the statistics of TCR-peptide contact preferences in existing crystal structures. We show that TCRen has high performance in discriminating cognate versus unrelated peptides and can facilitate the identification of cancer neoepitopes recognized by tumor-infiltrating lymphocytes.
Center of Life Sciences Skolkovo Institute of Science and Technology Moscow Russia
Central European Institute of Technology Brno Czech Republic
Higher School of Economics Moscow Russia
Shemyakin Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences Moscow Russia
Zobrazit více v PubMed
Qi, Q. et al. Diversity and clonal selection in the human T-cell repertoire. Proc. Natl Acad. Sci. USA 111, 13139–13144 (2014). DOI
Mora, T. & Walczak, A. M. How many different clonotypes do immune repertoires contain? Curr. Opin. Syst. Biol. 18, 104–110 (2019). DOI
Valkiers, S. et al. Recent advances in T-cell receptor repertoire analysis: bridging the gap with multimodal single-cell RNA sequencing. ImmunoInformatics 5, 100009 (2022). DOI
Rosati, E. et al. Overview of methodologies for T-cell receptor repertoire analysis. BMC Biotechnol. 17, 1–16 (2017). DOI
Joglekar, A. V. & Li, G. T cell antigen discovery. Nat. Methods 18, 873–880 (2020). DOI
Lin, X. et al. Rapid assessment of T-cell receptor specificity of the immune repertoire. Nat. Comput. Sci. 1, 362–373 (2021). DOI
Singh, N. K. et al. Emerging concepts in TCR specificity: rationalizing and (maybe) predicting outcomes. J. Immunol. 199, 2203–2213 (2017). DOI
Hudson, D., Fernandes, R. A., Basham, M., Ogg, G. & Koohy, H. Can we predict T cell specificity with digital biology and machine learning? Nat. Rev. Immunol. 23, 511–521 (2023). DOI
Gielis, S. et al. Detection of enriched T cell epitope specificity in full T cell receptor sequence repertoires. Front. Immunol. 10, 2820 (2019). DOI
Montemurro, A. et al. NetTCR-2.0 enables accurate prediction of TCR–peptide binding by using paired TCRα and β sequence data. Commun. Biol. 4, 1060 (2021). DOI
Mayer-Blackwell, K. et al. TCR meta-clonotypes for biomarker discovery with tcrdist3 enabled identification of public, HLA-restricted clusters of SARS-CoV-2 TCRs. eLife 10, e68605 (2021). DOI
Weber, A., Born, J. & Rodriguez Martínez, M. TITAN: T-cell receptor specificity prediction with bimodal attention networks. Bioinformatics 37, i237–i244 (2021). DOI
Springer, I., Tickotsky, N. & Louzoun, Y. Contribution of T cell receptor alpha and beta CDR3, MHC typing, V and J genes to peptide binding prediction. Front. Immunol. 12, 664514 (2021). DOI
Bagaev, D. V. et al. VDJdb in 2019: database extension, new analysis infrastructure and a T-cell receptor motif compendium. Nucleic Acids Res. 48, D1057–D1062 (2020). DOI
Tickotsky, N., Sagiv, T., Prilusky, J., Shifrut, E. & Friedman, N. McPAS-TCR: a manually curated catalogue of pathology-associated T cell receptor sequences. Bioinformatics 33, 2924–2929 (2017). DOI
Berman, H. M. et al. The protein data bank. Nucleic Acids Res. 28, 235–242 (2000). DOI
Jensen, K. K. et al. TCRpMHCmodels: structural modelling of TCR–pMHC class I complexes. Sci. Rep. 9, 14530 (2019). DOI
Meysman, P. et al. Benchmarking solutions to the T-cell receptor epitope prediction problem: IMMREP22 workshop report. ImmunoInformatics 9, 100024 (2023). DOI
Jiang, Y., Huo, M. & Cheng Li, S. TEINet: a deep learning framework for prediction of TCR-epitope binding specificity. Brief. Bioinform. 24, bbad086 (2023). DOI
Cai, M., Bang, S., Zhang, P. & Lee, H. ATM-TCR: TCR–epitope binding affinity prediction using a multi-head self-attention model. Front. Immunol. 13, 893247 (2022). DOI
Gao, Y. et al. Pan-Peptide Meta Learning for T-cell receptor–antigen binding recognition. Nat. Mach. Intell. 5, 236–249 (2023). DOI
Keskin, O., Bahar, I., Badretdinov, A. Y., Ptitsyn, O. B. & Jernigan, R. L. Empirical solvent-mediated potentials hold for both intra-molecular and inter-molecular inter-residue interactions. Protein Sci. 7, 2578–2586 (1998). DOI
Miyazawa, S. & Jernigan, R. L. Estimation of effective interresidue contact energies from protein crystal structures: quasi-chemical approximation. Macromolecules 18, 534–552 (1985). DOI
Vita, R. et al. The Immune Epitope Database (IEDB): 2018 update. Nucleic Acids Res. 47, D339–D343 (2019). DOI
Birnbaum, M. E. et al. Deconstructing the peptide-MHC specificity of T cell recognition. Cell 157, 1073–1087 (2014). DOI
Alford, R. F. et al. The rosetta all-atom energy function for macromolecular modeling and design. J. Chem. Theory Comput. 13, 3031–3048 (2017). DOI
Kumari, R. & Kumar, R. Open source drug discovery consortium, A. Lynn, g_mmpbsa–a GROMACS tool for high-throughput MM-PBSA calculations. J. Chem. Inf. Model. 54, 1951–1962 (2014). DOI
Gee, M. H. et al. Antigen identification for orphan T cell receptors expressed on tumor-infiltrating lymphocytes. Cell 172, 549–563.e16 (2018). DOI
Atchley, W. R., Zhao, J., Fernandes, A. D. & Drüke, T. Solving the protein sequence metric problem. Proc. Natl Acad. Sci. USA 102, 6395–6400 (2005). DOI
Kosmrlj, A., Jha, A. K., Huseby, E. S., Kardar, M. & Chakraborty, A. K. How the thymus designs antigen-specific and self-tolerant T cell receptor sequences. Proc. Natl Acad. Sci. USA 105, 16671–16676 (2008). DOI
Bobisse, S. et al. Sensitive and frequent identification of high avidity neo-epitope specific CD8 DOI
Devlin, J. R. et al. Structural dissimilarity from self drives neoepitope escape from immune tolerance. Nat. Chem. Biol. 16, 1269–1276 (2020). DOI
Bigot, J. et al. Splicing patterns in SF3B1-mutated uveal melanoma generate shared immunogenic tumor-specific neoepitopes. Cancer Discov. 11, 1938–1951 (2021). DOI
Bradley, P. Structure-based prediction of T cell receptor:peptide-MHC interactions. eLife 12, e82813 (2023). DOI
Abramson, J. et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 630, 493–500 (2024). DOI
Yin, R. et al. TCRmodel2: high-resolution modeling of T cell receptor recognition using deep learning. Nucleic Acids Res. https://doi.org/10.1093/nar/gkad356 (2023). DOI
Tubiana, J., Schneidman-Duhovny, D. & Wolfson, H. J. ScanNet: an interpretable geometric deep learning model for structure-based protein binding site prediction. Nat. Methods 19, 730–739 (2022). DOI
Gainza, P. et al. Deciphering interaction fingerprints from protein molecular surfaces using geometric deep learning. Nat. Methods 17, 184–192 (2020). DOI
Reynisson, B., Alvarez, B., Paul, S., Peters, B. & Nielsen, M. NetMHCpan-4.1 and NetMHCIIpan-4.0: improved predictions of MHC antigen presentation by concurrent motif deconvolution and integration of MS MHC eluted ligand data. Nucleic Acids Res. 48, W449–W454 (2020). DOI
Riley, T. P. et al. T cell receptor cross-reactivity expanded by dramatic peptide-MHC adaptability. Nat. Chem. Biol. 14, 934–942 (2018). DOI
Karnaukhov, V. Structure-based prediction of T-cell receptor recognition of unseen epitopes using residue-level pairwise statistical potential TCRen. Zenodo https://doi.org/10.5281/zenodo.11129800 (2024).