Loss of Lamin A leads to the nuclear translocation of AGO2 and compromised RNA interference

. 2024 Sep 09 ; 52 (16) : 9917-9935.

Jazyk angličtina Země Anglie, Velká Británie Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38994560

Grantová podpora
PAR 2020/228 Knut and Alice Wallenberg Foundation
2019-01855 Swedish Research Council
S19-0019 Swedish Society for Medical Research
CTS 19:5 Carl Trygger Foundation
SLS-934036 Swedish Medical Society
Emil och Vera Cornell Foundation
M18-0091 Ake Wiberg Foundation
2018-02791 Magnus Bergvall Foundation
FB18-109 Assar Gabrielssons Foundation
JS2019-0015 Jeansson Foundation
FB19-0063 Guvnor and Josef Anérs Foundation
Ollie and Elof Ericsson Foundation
193-614 Olle Engkvist Byggmästare Foundation
Knut and Alice Wallenberg Foundation
TAU Vice President for Research and Development Fund
2021.0033 Knut and Alice Wallenberg Fellow Program
2021-01164 Swedish Research Council
University of Gothenburg
B-DOMINANCE European Research Council - International

In mammals, RNA interference (RNAi) was historically studied as a cytoplasmic event; however, in the last decade, a growing number of reports convincingly show the nuclear localization of the Argonaute (AGO) proteins. Nevertheless, the extent of nuclear RNAi and its implication in biological mechanisms remain to be elucidated. We found that reduced Lamin A levels significantly induce nuclear influx of AGO2 in SHSY5Y neuroblastoma and A375 melanoma cancer cell lines, which normally have no nuclear AGO2. Lamin A KO manifested a more pronounced effect in SHSY5Y cells compared to A375 cells, evident by changes in cell morphology, increased cell proliferation, and oncogenic miRNA expression. Moreover, AGO fPAR-CLIP in Lamin A KO SHSY5Y cells revealed significantly reduced RNAi activity. Further exploration of the nuclear AGO interactome by mass spectrometry identified FAM120A, an RNA-binding protein and known interactor of AGO2. Subsequent FAM120A fPAR-CLIP, revealed that FAM120A co-binds AGO targets and that this competition reduces the RNAi activity. Therefore, loss of Lamin A triggers nuclear AGO2 translocation, FAM120A mediated RNAi impairment, and upregulation of oncogenic miRNAs, facilitating cancer cell proliferation.

Zobrazit více v PubMed

Lee Y.S., Dutta A.. MicroRNAs in cancer. Annu. Rev. Pathol. 2009; 4:199–227. PubMed PMC

Bartel D.P. Metazoan MicroRNAs. Cell. 2018; 173:20–51. PubMed PMC

Peters L., Meister G.. Argonaute proteins: mediators of RNA silencing. Mol. Cell. 2007; 26:611–623. PubMed

Zeng Y., Cullen B.R.. RNA interference in human cells is restricted to the cytoplasm. RNA. 2002; 8:855–860. PubMed PMC

Vickers T.A., Koo S., Bennett C.F., Crooke S.T., Dean N.M., Baker B.F.. Efficient reduction of target RNAs by small interfering RNA and RNase H-dependent antisense agents: a comparative analysis. J. Biol. Chem. 2003; 278:7108–7118. PubMed

Weinmann L., Höck J., Ivacevic T., Ohrt T., Mütze J., Schwille P., Kremmer E., Benes V., Urlaub H., Meister G.. Importin 8 is a gene silencing factor that targets argonaute proteins to distinct mRNAs. Cell. 2009; 136:496–507. PubMed

Nazer E., Gomez Acuna L., Kornblihtt A.R.. Seeking the truth behind the myth: argonaute tales from “nuclearland. Mol. Cell. 2022; 82:503–513. PubMed

Sarshad A.A., Juan A.H., Muler A.I.C., Anastasakis D.G., Wang X., Genzor P., Feng X., Tsai P.F., Sun H.W., Haase A.D.et al. .. Argonaute-miRNA complexes silence target mRNAs in the nucleus of mammalian stem cells. Mol. Cell. 2018; 71:1040–1050. PubMed PMC

Nowak I., Sarshad A.A.. Argonaute proteins take center stage in cancers. Cancers (Basel). 2021; 13. PubMed PMC

Johnson K.C., Corey D.R.. RNAi in cell nuclei: potential for a new layer of biological regulation and a new strategy for therapeutic discovery. RNA. 2023; 29:415–422. PubMed PMC

Johnson K.C., Kilikevicius A., Hofman C., Hu J., Liu Y., Aguilar S., Graswich J., Han Y., Wang T., Westcott J.M.et al. .. Nuclear localization of Argonaute 2 is affected by cell density and may relieve repression by microRNAs. Nucleic Acids Res. 2024; 52:1930–1952. PubMed PMC

Castanotto D., Zhang X., Alluin J., Zhang X., Ruger J., Armstrong B., Rossi J., Riggs A., Stein C.A.. A stress-induced response complex (SIRC) shuttles miRNAs, siRNAs, and oligonucleotides to the nucleus. Proc. Natl. Acad. Sci. U.S.A. 2018; 115:E5756–E5765. PubMed PMC

Sala L., Kumar M., Prajapat M., Chandrasekhar S., Cosby R.L., La Rocca G., Macfarlan T.S., Awasthi P., Chari R., Kruhlak M.et al. .. AGO2 silences mobile transposons in the nucleus of quiescent cells. Nat. Struct. Mol. Biol. 2023; 30:1985–1995. PubMed

Rentschler M., Chen Y., Pahl J., Soria-Martinez L., Braumuller H., Brenner E., Bischof O., Rocken M., Wieder T.. Nuclear translocation of Argonaute 2 in cytokine-induced senescence. Cell. Physiol. Biochem. 2018; 51:1103–1118. PubMed

Sallis S., Berube-Simard F.A., Grondin B., Leduc E., Azouz F., Belanger C., Pilon N.. The CHARGE syndrome-associated protein FAM172A controls AGO2 nuclear import. Life Sci. Alliance. 2023; 6:e202302133. PubMed PMC

Chu Y., Yokota S., Liu J., Kilikevicius A., Johnson K.C., Corey D.R.. Argonaute binding within human nuclear RNA and its impact on alternative splicing. RNA. 2021; 27:991–1003. PubMed PMC

Santovito D., Egea V., Bidzhekov K., Natarelli L., Mourao A., Blanchet X., Wichapong K., Aslani M., Brunssen C., Horckmans M.et al. .. Autophagy unleashes noncanonical microRNA functions. Autophagy. 2020; 16:2294–2296. PubMed PMC

Williams M., Cheng Y.Y., Blenkiron C., Reid G.. Exploring mechanisms of MicroRNA downregulation in cancer. Microrna. 2017; 6:2–16. PubMed

Shen J., Xia W., Khotskaya Y.B., Huo L., Nakanishi K., Lim S.O., Du Y., Wang Y., Chang W.C., Chen C.H.et al. .. EGFR modulates microRNA maturation in response to hypoxia through phosphorylation of AGO2. Nature. 2013; 497:383–387. PubMed PMC

Quevillon Huberdeau M., Zeitler D.M., Hauptmann J., Bruckmann A., Fressigne L., Danner J., Piquet S., Strieder N., Engelmann J.C., Jannot G.et al. .. Phosphorylation of Argonaute proteins affects mRNA binding and is essential for microRNA-guided gene silencing in vivo. EMBO J. 2017; 36:2088–2106. PubMed PMC

Liu T., Zhang H., Fang J., Yang Z., Chen R., Wang Y., Zhao X., Ge S., Yu J., Huang J.. AGO2 phosphorylation by c-src kinase promotes tumorigenesis. Neoplasia. 2020; 22:129–141. PubMed PMC

Horman S.R., Janas M.M., Litterst C., Wang B., MacRae I.J., Sever M.J., Morrissey D.V., Graves P., Luo B., Umesalma S.et al. .. Akt-mediated phosphorylation of argonaute 2 downregulates cleavage and upregulates translational repression of MicroRNA targets. Mol. Cell. 2013; 50:356–367. PubMed PMC

Srikantan S., Tominaga K., Gorospe M.. Functional interplay between RNA-binding protein HuR and microRNAs. Curr. Protein Pept. Sci. 2012; 13:372–379. PubMed PMC

Samaraweera L., Spengler B.A., Ross R.A.. Reciprocal antagonistic regulation of N-myc mRNA by miR-17 and the neuronal-specific RNA-binding protein HuD. Oncol. Rep. 2017; 38:545–550. PubMed PMC

Misiak D., Hagemann S., Bell J.L., Busch B., Lederer M., Bley N., Schulte J.H., Huttelmaier S.. The MicroRNA landscape of MYCN-amplified neuroblastoma. Front. Oncol. 2021; 11:647737. PubMed PMC

Ohrt T., Mütze J., Staroske W., Weinmann L., Höck J., Crell K., Meister G., Schwille P.. Fluorescence correlation spectroscopy and fluorescence cross-correlation spectroscopy reveal the cytoplasmic origination of loaded nuclear RISC in vivo in human cells. Nucleic Acids Res. 2008; 36:6439–6449. PubMed PMC

Bouzid T., Kim E., Riehl B.D., Esfahani A.M., Rosenbohm J., Yang R., Duan B., Lim J.Y.. The LINC complex, mechanotransduction, and mesenchymal stem cell function and fate. J Biol. Eng. 2019; 13:68. PubMed PMC

Guerreiro I., Kind J.. Spatial chromatin organization and gene regulation at the nuclear lamina. Curr. Opin. Genet. Dev. 2019; 55:19–25. PubMed PMC

Melcer S., Hezroni H., Rand E., Nissim-Rafinia M., Skoultchi A., Stewart C.L., Bustin M., Meshorer E.. Histone modifications and lamin A regulate chromatin protein dynamics in early embryonic stem cell differentiation. Nat. Commun. 2012; 3:910. PubMed PMC

Bitman-Lotan E., Orian A.. Nuclear organization and regulation of the differentiated state. Cell. Mol. Life Sci. 2021; 78:3141–3158. PubMed PMC

Dubik N., Mai S.. Lamin A/C: function in normal and tumor cells. Cancers (Basel). 2020; 12:3688. PubMed PMC

Gagnon K.T., Li L., Chu Y., Janowski B.A., Corey D.R.. RNAi factors are present and active in human cell nuclei. Cell Rep. 2014; 6:211–221. PubMed PMC

Huynh H.T., Shcherbinina E., Huang H.-C., Rezaei R., Sarshad A.A.. Biochemical separation of cytoplasmic and nuclear fraction for downstream molecular analysis. Curr. Protoc. 2024; 4:e1042. PubMed

Sakuma T., Nakade S., Sakane Y., Suzuki K.T., Yamamoto T.. MMEJ-assisted gene knock-in using TALENs and CRISPR-Cas9 with the PITCh systems. Nat. Protoc. 2016; 11:118–133. PubMed

Tandon N., Thakkar K.N., LaGory E.L., Liu Y., Giaccia A.J.. Generation of stable expression mammalian cell lines using lentivirus. Bio. Protoc. 2018; 8:e3073. PubMed PMC

Benhalevy D., Hafner M.. Proximity-CLIP provides a snapshot of protein-occupied RNA elements at subcellular resolution and transcriptome-wide scale. Methods Mol. Biol. 2020; 2166:283–305. PubMed PMC

Hauptmann J., Schraivogel D., Bruckmann A., Manickavel S., Jakob L., Eichner N., Pfaff J., Urban M., Sprunck S., Hafner M.et al. .. Biochemical isolation of Argonaute protein complexes by Ago-APP. Proc. Natl. Acad. Sci. U.S.A. 2015; 112:11841–11845. PubMed PMC

Wisniewski J.R., Zougman A., Nagaraj N., Mann M.. Universal sample preparation method for proteome analysis. Nat. Methods. 2009; 6:359–362. PubMed

Cox J., Mann M.. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 2008; 26:1367–1372. PubMed

Cox J., Hein M.Y., Luber C.A., Paron I., Nagaraj N., Mann M.. Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol. Cell. Proteomics. 2014; 13:2513–2526. PubMed PMC

Tyanova S., Temu T., Sinitcyn P., Carlson A., Hein M.Y., Geiger T., Mann M., Cox J.. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat. Methods. 2016; 13:731–740. PubMed

Dennis G. Jr, Sherman B.T., Hosack D.A., Yang J., Gao W., Lane H.C., Lempicki R.A. DAVID: database for annotation, visualization, and integrated discovery. Genome Biol. 2003; 4:P3. PubMed

Shannon P., Markiel A., Ozier O., Baliga N.S., Wang J.T., Ramage D., Amin N., Schwikowski B., Ideker T.. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003; 13:2498–2504. PubMed PMC

Szklarczyk D., Gable A.L., Lyon D., Junge A., Wyder S., Huerta-Cepas J., Simonovic M., Doncheva N.T., Morris J.H., Bork P.et al. .. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019; 47:D607–D613. PubMed PMC

Ewels P.A., Peltzer A., Fillinger S., Patel H., Alneberg J., Wilm A., Garcia M.U., Di Tommaso P., Nahnsen S.. The nf-core framework for community-curated bioinformatics pipelines. Nat. Biotechnol. 2020; 38:276–278. PubMed

Love M.I., Huber W., Anders S.. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014; 15:550. PubMed PMC

Wang L., Wang S., Li W.. RSeQC: quality control of RNA-seq experiments. Bioinformatics. 2012; 28:2184–2185. PubMed

Anastasakis D.G., Jacob A., Konstantinidou P., Meguro K., Claypool D., Cekan P., Haase A.D., Hafner M.. A non-radioactive, improved PAR-CLIP and small RNA cDNA library preparation protocol. Nucleic Acids Res. 2021; 49:e45–e45. PubMed PMC

Langmead B., Salzberg S.L.. Fast gapped-read alignment with Bowtie 2. Nat. Methods. 2012; 9:357–359. PubMed PMC

Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. 2011. 2011; 17:3.

Corcoran D.L., Georgiev S., Mukherjee N., Gottwein E., Skalsky R.L., Keene J.D., Ohler U.. PARalyzer: definition of RNA binding sites from PAR-CLIP short-read sequence data. Genome Biol. 2011; 12:R79. PubMed PMC

Li X., Pritykin Y., Concepcion C.P., Lu Y., La Rocca G., Zhang M., King B., Cook P.J., Au Y.W., Popow O.et al. .. High-resolution In vivo identification of miRNA targets by halo-enhanced Ago2 pull-down. Mol. Cell. 2020; 79:167–179. PubMed PMC

Chu Y., Yue X., Younger S.T., Janowski B.A., Corey D.R.. Involvement of argonaute proteins in gene silencing and activation by RNAs complementary to a non-coding transcript at the progesterone receptor promoter. Nucleic Acids Res. 2010; 38:7736–7748. PubMed PMC

Cautain B., Hill R., de Pedro N., Link W.. Components and regulation of nuclear transport processes. FEBS J. 2015; 282:445–462. PubMed PMC

Wang K.P., Bai Y., Wang J., Zhang J.Z.. Morphine protects SH-SY5Y human neuroblastoma cells against Dickkopf1-induced apoptosis. Mol. Med. Rep. 2015; 11:1174–1180. PubMed

Lelliott E.J., Cullinane C., Martin C.A., Walker R., Ramsbottom K.M., Souza-Fonseca-Guimaraes F., Abuhammad S., Michie J., Kirby L., Young R.J.et al. .. A novel immunogenic mouse model of melanoma for the preclinical assessment of combination targeted and immune-based therapy. Sci. Rep. 2019; 9:1225. PubMed PMC

Luo Y.B., Mastaglia F.L., Wilton S.D.. Normal and aberrant splicing of LMNA. J. Med. Genet. 2014; 51:215–223. PubMed

Qin W., Cho K.F., Cavanagh P.E., Ting A.Y.. Deciphering molecular interactions by proximity labeling. Nat. Methods. 2021; 18:133–143. PubMed PMC

Wang S., Sun X., Yi C., Zhang D., Lin X., Sun X., Chen H., Jin M.. AGO2 Negatively regulates type I interferon signaling pathway by competition binding IRF3 with CBP/p300. Front. Cell. Infect. Microbiol. 2017; 7:195. PubMed PMC

Huang H.-C., Lobo V., Schön K., Nowak I., Westholm J.O., Fernandez C., Patel A.A.H., Wiel C., Sayin V.I., Anastasakis D.G.et al. .. Nuclear RNAi modulates influenza A virus infectivity by downregulating type-I interferon response. 2024; bioRxiv doi:07 March 2024, preprint: not peer reviewed10.1101/2024.03.07.583365. DOI

Tanaka M., Sasaki K., Kamata R., Hoshino Y., Yanagihara K., Sakai R.. A novel RNA-binding protein, Ossa/C9orf10, regulates activity of src kinases to protect cells from oxidative stress-induced apoptosis. Mol. Cell. Biol. 2009; 29:402–413. PubMed PMC

Kalantari R., Hicks J.A., Li L., Gagnon K.T., Sridhara V., Lemoff A., Mirzaei H., Corey D.R.. Stable association of RNAi machinery is conserved between the cytoplasm and nucleus of human cells. RNA. 2016; 22:1085–1098. PubMed PMC

Kelly T.J., Suzuki H.I., Zamudio J.R., Suzuki M., Sharp P.A.. Sequestration of microRNA-mediated target repression by the Ago2-associated RNA-binding protein FAM120A. RNA. 2019; 25:1291–1297. PubMed PMC

Bell E.S., Shah P., Zuela-Sopilniak N., Kim D., Varlet A.A., Morival J.L.P., McGregor A.L., Isermann P., Davidson P.M., Elacqua J.J.et al. .. Low lamin A levels enhance confined cell migration and metastatic capacity in breast cancer. Oncogene. 2022; 41:4211–4230. PubMed PMC

Stalder L., Heusermann W., Sokol L., Trojer D., Wirz J., Hean J., Fritzsche A., Aeschimann F., Pfanzagl V., Basselet P.et al. .. The rough endoplasmatic reticulum is a central nucleation site of siRNA-mediated RNA silencing. EMBO J. 2013; 32:1115–1127. PubMed PMC

Sen G.L., Blau H.M.. Argonaute 2/RISC resides in sites of mammalian mRNA decay known as cytoplasmic bodies. Nat. Cell Biol. 2005; 7:633–636. PubMed

Hirsch M., Helm M.. Live cell imaging of duplex siRNA intracellular trafficking. Nucleic Acids Res. 2015; 43:4650–4660. PubMed PMC

Tan G.S., Garchow B.G., Liu X., Yeung J., Morris J.P.t., Cuellar T.L., McManus M.T., Kiriakidou M.. Expanded RNA-binding activities of mammalian argonaute 2. Nucleic Acids Res. 2009; 37:7533–7545. PubMed PMC

Goldberg M.W. Nuclear pore complex tethers to the cytoskeleton. Semin. Cell Dev. Biol. 2017; 68:52–58. PubMed

Heo S.J., Cosgrove B.D., Dai E.N., Mauck R.L.. Mechano-adaptation of the stem cell nucleus. Nucleus. 2018; 9:9–19. PubMed PMC

Irianto J., Pfeifer C.R., Ivanovska I.L., Swift J., Discher D.E.. Nuclear lamins in cancer. Cell. Mol. Bioeng. 2016; 9:258–267. PubMed PMC

Atwood B.L., Woolnough J.L., Lefevre G.M., Saint Just Ribeiro M., Felsenfeld G., Giles K.E.. Human Argonaute 2 is tethered to ribosomal RNA through MicroRNA interactions. J. Biol. Chem. 2016; 291:17919–17928. PubMed PMC

Wu S., Sun H., Wang Y., Yang X., Meng Q., Yang H., Zhu H., Tang W., Li X., Aschner M.et al. .. MALAT1 rs664589 Polymorphism inhibits binding to miR-194-5p, contributing to colorectal cancer risk, growth, and metastasis. Cancer Res. 2019; 79:5432–5441. PubMed

Gruszka R., Zakrzewska M.. The oncogenic relevance of miR-17-92 cluster and its paralogous miR-106b-25 and miR-106a-363 clusters in brain tumors. Int. J. Mol. Sci. 2018; 19:879. PubMed PMC

Kim S., Kim S., Chang H.R., Kim D., Park J., Son N., Park J., Yoon M., Chae G., Kim Y.K.et al. .. The regulatory impact of RNA-binding proteins on microRNA targeting. Nat. Commun. 2021; 12:5057. PubMed PMC

Bottini S., Hamouda-Tekaya N., Mategot R., Zaragosi L.E., Audebert S., Pisano S., Grandjean V., Mauduit C., Benahmed M., Barbry P.et al. .. Post-transcriptional gene silencing mediated by microRNAs is controlled by nucleoplasmic sfpq. Nat. Commun. 2017; 8:1189. PubMed PMC

Perez-Riverol Y., Csordas A., Bai J., Bernal-Llinares M., Hewapathirana S., Kundu D.J., Inuganti A., Griss J., Mayer G., Eisenacher M.et al. .. The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res. 2019; 47:D442–D450. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...