Loss of Lamin A leads to the nuclear translocation of AGO2 and compromised RNA interference
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články
Grantová podpora
PAR 2020/228
Knut and Alice Wallenberg Foundation
2019-01855
Swedish Research Council
S19-0019
Swedish Society for Medical Research
CTS 19:5
Carl Trygger Foundation
SLS-934036
Swedish Medical Society
Emil och Vera Cornell Foundation
M18-0091
Ake Wiberg Foundation
2018-02791
Magnus Bergvall Foundation
FB18-109
Assar Gabrielssons Foundation
JS2019-0015
Jeansson Foundation
FB19-0063
Guvnor and Josef Anérs Foundation
Ollie and Elof Ericsson Foundation
193-614
Olle Engkvist Byggmästare Foundation
Knut and Alice Wallenberg Foundation
TAU Vice President for Research and Development Fund
2021.0033
Knut and Alice Wallenberg Fellow Program
2021-01164
Swedish Research Council
University of Gothenburg
B-DOMINANCE
European Research Council - International
PubMed
38994560
PubMed Central
PMC11381323
DOI
10.1093/nar/gkae589
PII: 7712617
Knihovny.cz E-zdroje
- MeSH
- aktivní transport - buněčné jádro MeSH
- Argonaut proteiny * metabolismus genetika MeSH
- buněčné jádro * metabolismus MeSH
- lamin typ A * metabolismus genetika MeSH
- lidé MeSH
- melanom genetika metabolismus patologie MeSH
- mikro RNA * metabolismus genetika MeSH
- nádorové buněčné linie MeSH
- proliferace buněk * genetika MeSH
- proteiny vázající RNA metabolismus genetika MeSH
- RNA interference * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- AGO2 protein, human MeSH Prohlížeč
- Argonaut proteiny * MeSH
- lamin typ A * MeSH
- mikro RNA * MeSH
- proteiny vázající RNA MeSH
In mammals, RNA interference (RNAi) was historically studied as a cytoplasmic event; however, in the last decade, a growing number of reports convincingly show the nuclear localization of the Argonaute (AGO) proteins. Nevertheless, the extent of nuclear RNAi and its implication in biological mechanisms remain to be elucidated. We found that reduced Lamin A levels significantly induce nuclear influx of AGO2 in SHSY5Y neuroblastoma and A375 melanoma cancer cell lines, which normally have no nuclear AGO2. Lamin A KO manifested a more pronounced effect in SHSY5Y cells compared to A375 cells, evident by changes in cell morphology, increased cell proliferation, and oncogenic miRNA expression. Moreover, AGO fPAR-CLIP in Lamin A KO SHSY5Y cells revealed significantly reduced RNAi activity. Further exploration of the nuclear AGO interactome by mass spectrometry identified FAM120A, an RNA-binding protein and known interactor of AGO2. Subsequent FAM120A fPAR-CLIP, revealed that FAM120A co-binds AGO targets and that this competition reduces the RNAi activity. Therefore, loss of Lamin A triggers nuclear AGO2 translocation, FAM120A mediated RNAi impairment, and upregulation of oncogenic miRNAs, facilitating cancer cell proliferation.
Zobrazit více v PubMed
Lee Y.S., Dutta A.. MicroRNAs in cancer. Annu. Rev. Pathol. 2009; 4:199–227. PubMed PMC
Bartel D.P. Metazoan MicroRNAs. Cell. 2018; 173:20–51. PubMed PMC
Peters L., Meister G.. Argonaute proteins: mediators of RNA silencing. Mol. Cell. 2007; 26:611–623. PubMed
Zeng Y., Cullen B.R.. RNA interference in human cells is restricted to the cytoplasm. RNA. 2002; 8:855–860. PubMed PMC
Vickers T.A., Koo S., Bennett C.F., Crooke S.T., Dean N.M., Baker B.F.. Efficient reduction of target RNAs by small interfering RNA and RNase H-dependent antisense agents: a comparative analysis. J. Biol. Chem. 2003; 278:7108–7118. PubMed
Weinmann L., Höck J., Ivacevic T., Ohrt T., Mütze J., Schwille P., Kremmer E., Benes V., Urlaub H., Meister G.. Importin 8 is a gene silencing factor that targets argonaute proteins to distinct mRNAs. Cell. 2009; 136:496–507. PubMed
Nazer E., Gomez Acuna L., Kornblihtt A.R.. Seeking the truth behind the myth: argonaute tales from “nuclearland. Mol. Cell. 2022; 82:503–513. PubMed
Sarshad A.A., Juan A.H., Muler A.I.C., Anastasakis D.G., Wang X., Genzor P., Feng X., Tsai P.F., Sun H.W., Haase A.D.et al. .. Argonaute-miRNA complexes silence target mRNAs in the nucleus of mammalian stem cells. Mol. Cell. 2018; 71:1040–1050. PubMed PMC
Nowak I., Sarshad A.A.. Argonaute proteins take center stage in cancers. Cancers (Basel). 2021; 13. PubMed PMC
Johnson K.C., Corey D.R.. RNAi in cell nuclei: potential for a new layer of biological regulation and a new strategy for therapeutic discovery. RNA. 2023; 29:415–422. PubMed PMC
Johnson K.C., Kilikevicius A., Hofman C., Hu J., Liu Y., Aguilar S., Graswich J., Han Y., Wang T., Westcott J.M.et al. .. Nuclear localization of Argonaute 2 is affected by cell density and may relieve repression by microRNAs. Nucleic Acids Res. 2024; 52:1930–1952. PubMed PMC
Castanotto D., Zhang X., Alluin J., Zhang X., Ruger J., Armstrong B., Rossi J., Riggs A., Stein C.A.. A stress-induced response complex (SIRC) shuttles miRNAs, siRNAs, and oligonucleotides to the nucleus. Proc. Natl. Acad. Sci. U.S.A. 2018; 115:E5756–E5765. PubMed PMC
Sala L., Kumar M., Prajapat M., Chandrasekhar S., Cosby R.L., La Rocca G., Macfarlan T.S., Awasthi P., Chari R., Kruhlak M.et al. .. AGO2 silences mobile transposons in the nucleus of quiescent cells. Nat. Struct. Mol. Biol. 2023; 30:1985–1995. PubMed
Rentschler M., Chen Y., Pahl J., Soria-Martinez L., Braumuller H., Brenner E., Bischof O., Rocken M., Wieder T.. Nuclear translocation of Argonaute 2 in cytokine-induced senescence. Cell. Physiol. Biochem. 2018; 51:1103–1118. PubMed
Sallis S., Berube-Simard F.A., Grondin B., Leduc E., Azouz F., Belanger C., Pilon N.. The CHARGE syndrome-associated protein FAM172A controls AGO2 nuclear import. Life Sci. Alliance. 2023; 6:e202302133. PubMed PMC
Chu Y., Yokota S., Liu J., Kilikevicius A., Johnson K.C., Corey D.R.. Argonaute binding within human nuclear RNA and its impact on alternative splicing. RNA. 2021; 27:991–1003. PubMed PMC
Santovito D., Egea V., Bidzhekov K., Natarelli L., Mourao A., Blanchet X., Wichapong K., Aslani M., Brunssen C., Horckmans M.et al. .. Autophagy unleashes noncanonical microRNA functions. Autophagy. 2020; 16:2294–2296. PubMed PMC
Williams M., Cheng Y.Y., Blenkiron C., Reid G.. Exploring mechanisms of MicroRNA downregulation in cancer. Microrna. 2017; 6:2–16. PubMed
Shen J., Xia W., Khotskaya Y.B., Huo L., Nakanishi K., Lim S.O., Du Y., Wang Y., Chang W.C., Chen C.H.et al. .. EGFR modulates microRNA maturation in response to hypoxia through phosphorylation of AGO2. Nature. 2013; 497:383–387. PubMed PMC
Quevillon Huberdeau M., Zeitler D.M., Hauptmann J., Bruckmann A., Fressigne L., Danner J., Piquet S., Strieder N., Engelmann J.C., Jannot G.et al. .. Phosphorylation of Argonaute proteins affects mRNA binding and is essential for microRNA-guided gene silencing in vivo. EMBO J. 2017; 36:2088–2106. PubMed PMC
Liu T., Zhang H., Fang J., Yang Z., Chen R., Wang Y., Zhao X., Ge S., Yu J., Huang J.. AGO2 phosphorylation by c-src kinase promotes tumorigenesis. Neoplasia. 2020; 22:129–141. PubMed PMC
Horman S.R., Janas M.M., Litterst C., Wang B., MacRae I.J., Sever M.J., Morrissey D.V., Graves P., Luo B., Umesalma S.et al. .. Akt-mediated phosphorylation of argonaute 2 downregulates cleavage and upregulates translational repression of MicroRNA targets. Mol. Cell. 2013; 50:356–367. PubMed PMC
Srikantan S., Tominaga K., Gorospe M.. Functional interplay between RNA-binding protein HuR and microRNAs. Curr. Protein Pept. Sci. 2012; 13:372–379. PubMed PMC
Samaraweera L., Spengler B.A., Ross R.A.. Reciprocal antagonistic regulation of N-myc mRNA by miR-17 and the neuronal-specific RNA-binding protein HuD. Oncol. Rep. 2017; 38:545–550. PubMed PMC
Misiak D., Hagemann S., Bell J.L., Busch B., Lederer M., Bley N., Schulte J.H., Huttelmaier S.. The MicroRNA landscape of MYCN-amplified neuroblastoma. Front. Oncol. 2021; 11:647737. PubMed PMC
Ohrt T., Mütze J., Staroske W., Weinmann L., Höck J., Crell K., Meister G., Schwille P.. Fluorescence correlation spectroscopy and fluorescence cross-correlation spectroscopy reveal the cytoplasmic origination of loaded nuclear RISC in vivo in human cells. Nucleic Acids Res. 2008; 36:6439–6449. PubMed PMC
Bouzid T., Kim E., Riehl B.D., Esfahani A.M., Rosenbohm J., Yang R., Duan B., Lim J.Y.. The LINC complex, mechanotransduction, and mesenchymal stem cell function and fate. J Biol. Eng. 2019; 13:68. PubMed PMC
Guerreiro I., Kind J.. Spatial chromatin organization and gene regulation at the nuclear lamina. Curr. Opin. Genet. Dev. 2019; 55:19–25. PubMed PMC
Melcer S., Hezroni H., Rand E., Nissim-Rafinia M., Skoultchi A., Stewart C.L., Bustin M., Meshorer E.. Histone modifications and lamin A regulate chromatin protein dynamics in early embryonic stem cell differentiation. Nat. Commun. 2012; 3:910. PubMed PMC
Bitman-Lotan E., Orian A.. Nuclear organization and regulation of the differentiated state. Cell. Mol. Life Sci. 2021; 78:3141–3158. PubMed PMC
Dubik N., Mai S.. Lamin A/C: function in normal and tumor cells. Cancers (Basel). 2020; 12:3688. PubMed PMC
Gagnon K.T., Li L., Chu Y., Janowski B.A., Corey D.R.. RNAi factors are present and active in human cell nuclei. Cell Rep. 2014; 6:211–221. PubMed PMC
Huynh H.T., Shcherbinina E., Huang H.-C., Rezaei R., Sarshad A.A.. Biochemical separation of cytoplasmic and nuclear fraction for downstream molecular analysis. Curr. Protoc. 2024; 4:e1042. PubMed
Sakuma T., Nakade S., Sakane Y., Suzuki K.T., Yamamoto T.. MMEJ-assisted gene knock-in using TALENs and CRISPR-Cas9 with the PITCh systems. Nat. Protoc. 2016; 11:118–133. PubMed
Tandon N., Thakkar K.N., LaGory E.L., Liu Y., Giaccia A.J.. Generation of stable expression mammalian cell lines using lentivirus. Bio. Protoc. 2018; 8:e3073. PubMed PMC
Benhalevy D., Hafner M.. Proximity-CLIP provides a snapshot of protein-occupied RNA elements at subcellular resolution and transcriptome-wide scale. Methods Mol. Biol. 2020; 2166:283–305. PubMed PMC
Hauptmann J., Schraivogel D., Bruckmann A., Manickavel S., Jakob L., Eichner N., Pfaff J., Urban M., Sprunck S., Hafner M.et al. .. Biochemical isolation of Argonaute protein complexes by Ago-APP. Proc. Natl. Acad. Sci. U.S.A. 2015; 112:11841–11845. PubMed PMC
Wisniewski J.R., Zougman A., Nagaraj N., Mann M.. Universal sample preparation method for proteome analysis. Nat. Methods. 2009; 6:359–362. PubMed
Cox J., Mann M.. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 2008; 26:1367–1372. PubMed
Cox J., Hein M.Y., Luber C.A., Paron I., Nagaraj N., Mann M.. Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol. Cell. Proteomics. 2014; 13:2513–2526. PubMed PMC
Tyanova S., Temu T., Sinitcyn P., Carlson A., Hein M.Y., Geiger T., Mann M., Cox J.. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat. Methods. 2016; 13:731–740. PubMed
Dennis G. Jr, Sherman B.T., Hosack D.A., Yang J., Gao W., Lane H.C., Lempicki R.A. DAVID: database for annotation, visualization, and integrated discovery. Genome Biol. 2003; 4:P3. PubMed
Shannon P., Markiel A., Ozier O., Baliga N.S., Wang J.T., Ramage D., Amin N., Schwikowski B., Ideker T.. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003; 13:2498–2504. PubMed PMC
Szklarczyk D., Gable A.L., Lyon D., Junge A., Wyder S., Huerta-Cepas J., Simonovic M., Doncheva N.T., Morris J.H., Bork P.et al. .. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019; 47:D607–D613. PubMed PMC
Ewels P.A., Peltzer A., Fillinger S., Patel H., Alneberg J., Wilm A., Garcia M.U., Di Tommaso P., Nahnsen S.. The nf-core framework for community-curated bioinformatics pipelines. Nat. Biotechnol. 2020; 38:276–278. PubMed
Love M.I., Huber W., Anders S.. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014; 15:550. PubMed PMC
Wang L., Wang S., Li W.. RSeQC: quality control of RNA-seq experiments. Bioinformatics. 2012; 28:2184–2185. PubMed
Anastasakis D.G., Jacob A., Konstantinidou P., Meguro K., Claypool D., Cekan P., Haase A.D., Hafner M.. A non-radioactive, improved PAR-CLIP and small RNA cDNA library preparation protocol. Nucleic Acids Res. 2021; 49:e45–e45. PubMed PMC
Langmead B., Salzberg S.L.. Fast gapped-read alignment with Bowtie 2. Nat. Methods. 2012; 9:357–359. PubMed PMC
Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. 2011. 2011; 17:3.
Corcoran D.L., Georgiev S., Mukherjee N., Gottwein E., Skalsky R.L., Keene J.D., Ohler U.. PARalyzer: definition of RNA binding sites from PAR-CLIP short-read sequence data. Genome Biol. 2011; 12:R79. PubMed PMC
Li X., Pritykin Y., Concepcion C.P., Lu Y., La Rocca G., Zhang M., King B., Cook P.J., Au Y.W., Popow O.et al. .. High-resolution In vivo identification of miRNA targets by halo-enhanced Ago2 pull-down. Mol. Cell. 2020; 79:167–179. PubMed PMC
Chu Y., Yue X., Younger S.T., Janowski B.A., Corey D.R.. Involvement of argonaute proteins in gene silencing and activation by RNAs complementary to a non-coding transcript at the progesterone receptor promoter. Nucleic Acids Res. 2010; 38:7736–7748. PubMed PMC
Cautain B., Hill R., de Pedro N., Link W.. Components and regulation of nuclear transport processes. FEBS J. 2015; 282:445–462. PubMed PMC
Wang K.P., Bai Y., Wang J., Zhang J.Z.. Morphine protects SH-SY5Y human neuroblastoma cells against Dickkopf1-induced apoptosis. Mol. Med. Rep. 2015; 11:1174–1180. PubMed
Lelliott E.J., Cullinane C., Martin C.A., Walker R., Ramsbottom K.M., Souza-Fonseca-Guimaraes F., Abuhammad S., Michie J., Kirby L., Young R.J.et al. .. A novel immunogenic mouse model of melanoma for the preclinical assessment of combination targeted and immune-based therapy. Sci. Rep. 2019; 9:1225. PubMed PMC
Luo Y.B., Mastaglia F.L., Wilton S.D.. Normal and aberrant splicing of LMNA. J. Med. Genet. 2014; 51:215–223. PubMed
Qin W., Cho K.F., Cavanagh P.E., Ting A.Y.. Deciphering molecular interactions by proximity labeling. Nat. Methods. 2021; 18:133–143. PubMed PMC
Wang S., Sun X., Yi C., Zhang D., Lin X., Sun X., Chen H., Jin M.. AGO2 Negatively regulates type I interferon signaling pathway by competition binding IRF3 with CBP/p300. Front. Cell. Infect. Microbiol. 2017; 7:195. PubMed PMC
Huang H.-C., Lobo V., Schön K., Nowak I., Westholm J.O., Fernandez C., Patel A.A.H., Wiel C., Sayin V.I., Anastasakis D.G.et al. .. Nuclear RNAi modulates influenza A virus infectivity by downregulating type-I interferon response. 2024; bioRxiv doi:07 March 2024, preprint: not peer reviewed10.1101/2024.03.07.583365. DOI
Tanaka M., Sasaki K., Kamata R., Hoshino Y., Yanagihara K., Sakai R.. A novel RNA-binding protein, Ossa/C9orf10, regulates activity of src kinases to protect cells from oxidative stress-induced apoptosis. Mol. Cell. Biol. 2009; 29:402–413. PubMed PMC
Kalantari R., Hicks J.A., Li L., Gagnon K.T., Sridhara V., Lemoff A., Mirzaei H., Corey D.R.. Stable association of RNAi machinery is conserved between the cytoplasm and nucleus of human cells. RNA. 2016; 22:1085–1098. PubMed PMC
Kelly T.J., Suzuki H.I., Zamudio J.R., Suzuki M., Sharp P.A.. Sequestration of microRNA-mediated target repression by the Ago2-associated RNA-binding protein FAM120A. RNA. 2019; 25:1291–1297. PubMed PMC
Bell E.S., Shah P., Zuela-Sopilniak N., Kim D., Varlet A.A., Morival J.L.P., McGregor A.L., Isermann P., Davidson P.M., Elacqua J.J.et al. .. Low lamin A levels enhance confined cell migration and metastatic capacity in breast cancer. Oncogene. 2022; 41:4211–4230. PubMed PMC
Stalder L., Heusermann W., Sokol L., Trojer D., Wirz J., Hean J., Fritzsche A., Aeschimann F., Pfanzagl V., Basselet P.et al. .. The rough endoplasmatic reticulum is a central nucleation site of siRNA-mediated RNA silencing. EMBO J. 2013; 32:1115–1127. PubMed PMC
Sen G.L., Blau H.M.. Argonaute 2/RISC resides in sites of mammalian mRNA decay known as cytoplasmic bodies. Nat. Cell Biol. 2005; 7:633–636. PubMed
Hirsch M., Helm M.. Live cell imaging of duplex siRNA intracellular trafficking. Nucleic Acids Res. 2015; 43:4650–4660. PubMed PMC
Tan G.S., Garchow B.G., Liu X., Yeung J., Morris J.P.t., Cuellar T.L., McManus M.T., Kiriakidou M.. Expanded RNA-binding activities of mammalian argonaute 2. Nucleic Acids Res. 2009; 37:7533–7545. PubMed PMC
Goldberg M.W. Nuclear pore complex tethers to the cytoskeleton. Semin. Cell Dev. Biol. 2017; 68:52–58. PubMed
Heo S.J., Cosgrove B.D., Dai E.N., Mauck R.L.. Mechano-adaptation of the stem cell nucleus. Nucleus. 2018; 9:9–19. PubMed PMC
Irianto J., Pfeifer C.R., Ivanovska I.L., Swift J., Discher D.E.. Nuclear lamins in cancer. Cell. Mol. Bioeng. 2016; 9:258–267. PubMed PMC
Atwood B.L., Woolnough J.L., Lefevre G.M., Saint Just Ribeiro M., Felsenfeld G., Giles K.E.. Human Argonaute 2 is tethered to ribosomal RNA through MicroRNA interactions. J. Biol. Chem. 2016; 291:17919–17928. PubMed PMC
Wu S., Sun H., Wang Y., Yang X., Meng Q., Yang H., Zhu H., Tang W., Li X., Aschner M.et al. .. MALAT1 rs664589 Polymorphism inhibits binding to miR-194-5p, contributing to colorectal cancer risk, growth, and metastasis. Cancer Res. 2019; 79:5432–5441. PubMed
Gruszka R., Zakrzewska M.. The oncogenic relevance of miR-17-92 cluster and its paralogous miR-106b-25 and miR-106a-363 clusters in brain tumors. Int. J. Mol. Sci. 2018; 19:879. PubMed PMC
Kim S., Kim S., Chang H.R., Kim D., Park J., Son N., Park J., Yoon M., Chae G., Kim Y.K.et al. .. The regulatory impact of RNA-binding proteins on microRNA targeting. Nat. Commun. 2021; 12:5057. PubMed PMC
Bottini S., Hamouda-Tekaya N., Mategot R., Zaragosi L.E., Audebert S., Pisano S., Grandjean V., Mauduit C., Benahmed M., Barbry P.et al. .. Post-transcriptional gene silencing mediated by microRNAs is controlled by nucleoplasmic sfpq. Nat. Commun. 2017; 8:1189. PubMed PMC
Perez-Riverol Y., Csordas A., Bai J., Bernal-Llinares M., Hewapathirana S., Kundu D.J., Inuganti A., Griss J., Mayer G., Eisenacher M.et al. .. The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res. 2019; 47:D442–D450. PubMed PMC