Direct Multi-Deuterium Labelling of Pirtobrutinib

. 2024 Jul ; 67 (9) : 314-323. [epub] 20240714

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39004786

Grantová podpora
61388963 Czech Academy of Sciences
Charles University

Herein, we demonstrate an efficient method for multi-deuterium labelling of pirtobrutinib-a Bruton's tyrosine kinase inhibitor recently approved by the FDA-using a straightforward hydrogen isotope exchange (HIE) reaction. A remarkably high level of deuterium incorporation was achieved using an excess of a Kerr-type iridium catalyst. The key factor in the significant deuterium labelling was the decision to employ a deuterium uniformly labelled solvent, chlorobenzene-d5, at an elevated temperature. Virtually, no d0-d3 species were detected, with only traces of d4-d5 isotopomers (< 5%) observable in the mass spectrum of pirtobrutinib-d8, fulfilling requirements for stable isotope-labelled internal standard. The labelled compound-mainly consisting of isotopomers d6-d9 at 82.4% of the total abundance-was isolated in a high yield (73%) and purity (99%). Noteworthy, fluorine group acting as a directing group was observed for the first time. Significant incorporation of deuterium in ortho-positions, exceeding 87%, was observed. Interestingly, chlorinated solvent used in the HIE reactions was non-specifically deuterated yielding up to 0.42 deuterium per chlorobenzene molecule even at an exceptionally low iridium catalyst loading of 4.17 × 10-2 mol%.

Zobrazit více v PubMed

M. Shirley, “Bruton Tyrosine Kinase Inhibitors in B‐Cell Malignancies: Their Use and Differential Features,” Targeted Oncology 17, no. 1 (2022): 69–84, https://doi.org/10.1007/s11523‐021‐00857‐8.

F. St‐Pierre and S. Ma, “Use of BTK Inhibitors in Chronic Lymphocytic Leukemia/Small Lymphocytic Lymphoma (CLL/SLL): A Practical Guidance,” Blood Lymphatic Cancer Targets and Theraphy 12, no. July (2022): 81–98, https://doi.org/10.2147/blctt.s326627.

L. C. Arneson, K. J. Carroll, and E. M. Ruderman, “Bruton's Tyrosine Kinase Inhibition for the Treatment of Rheumatoid Arthritis,” ImmunoTargets and Therapy 10, no. June (2021): 333–342, https://doi.org/10.2147/ITT.S288550.

A. Lorenzo‐Vizcaya, S. Fasano, and D. A. Isenberg, “Bruton's Tyrosine Kinase Inhibitors: A New Therapeutic Target for the Treatment of SLE?” ImmunoTargets and Therapy 9 (2020): 105–110, https://doi.org/10.2147/ITT.S240874.

S. J. Keam, “Pirtobrutinib: First Approval,” Drugs 83, no. 6 (2023): 547–553, https://doi.org/10.1007/s40265‐023‐01860‐1.

EMA. “CHMP Summary of Positive Opinion for Jaypirca,” Accessed February 22, 2024, https://www.ema.europa.eu/en/documents/smop‐initial/chmp‐summary‐positive‐opinion‐jaypirca_en.pdf.

B. Aslan, G. Kismali, L. R. Iles, et al., “Pirtobrutinib Inhibits Wild‐Type and Mutant Bruton's Tyrosine Kinase‐Mediated Signaling in Chronic Lymphocytic Leukemia,” Blood Cancer Journal 12, no. 5 (2022): 1–12, https://doi.org/10.1038/s41408‐022‐00675‐9.

S. K. De, “Pirtobrutinib: First Non‐Covalent Tyrosine Kinase Inhibitor for Treat‐ Ing Relapsed or Refractory Mantle Cell Lymphoma in Adults,” Current Medicinal Chemistry 31, no. 30 (2024): 1–6, https://doi.org/10.2174/0109298673251030231004052822.

J. Atzrodt, V. Derdau, W. J. Kerr, and M. Reid, “Deuterium‐ and Tritium‐Labelled Compounds: Applications in the Life Sciences,” Angewandte Chemie ‐ International Edition 57, no. 7 (2018): 1758–1784, https://doi.org/10.1002/anie.201704146.

M. Kriegelstein, M. Hroch, and A. Marek, “Synthesis of [13C6]‐Ibrutinib,” Journal of Labelled Compounds and Radiopharmaceuticals 64, no. 13 (2021): 500–512, https://doi.org/10.1002/jlcr.3944.

M. Mžik, N. Váňová, M. Kriegelstein, and M. Hroch, “Differential Adsorption of an Analyte and Its D4, D5 and 13C6 Labeled Analogues Combined With Instrument‐Specific Carry‐Over Issues: The Achilles' Heel of Ibrutinib TDM,” Journal of Pharmaceutical and Biomedical Analysis 206 (2021): 126843, https://doi.org/10.1016/j.jpba.2021.114366.

J. Atzrodt and V. Derdau, “Pd‐ and Pt‐Catalyzed H/D Exchange Methods and Their Application for Internal MS Standard Preparation From a Sanofi‐Aventis Perspective,” Journal of Labelled Compounds and Radiopharmaceuticals 53, no. 11–12 (2010): 674–685, https://doi.org/10.1002/jlcr.1818.

C. S. Elmore and R. A. Bragg, “Isotope Chemistry; a Useful Tool in the Drug Discovery Arsenal,” Bioorganic & Medicinal Chemistry Letters 25, no. 2 (2015): 167–171, https://doi.org/10.1016/j.bmcl.2014.11.051.

A. J. Arguelles Delgado, C. T. Aary, J. W. Fennell, S. A. Frank, N. A. Magnus, E. A. McFaddin, R. R. Rothhaar, S. R. Spencer and R. K. Vaid “Processes and Intermediates for the Preparation of (S)‐5‐Amino‐3‐(4‐((5‐Fluoro‐2‐Methoxybenzamido)Methyl)Phenyl)‐1‐(1,1,1‐Trifluoropropane‐2‐Yl)‐1H‐Pyrazole‐4‐Carboxamide”. WO 2022/056100 A1, 2022.

N. Guisot “Compounds Usefull as Kinase Inhibitors,” WO 2017/103611 A1, 2017.

S. Cacatian, D. A. Claremon, L. W. Dillard, C. Dong, Y. Fan, L. Jia; S. D. Lotesta, A. Marcus, A. Morales‐Ramos, S. B. Singh, S. Venkatraman; J. Yuan, Y. Zheng, L. Zhuang, S. D. Parent and T. L. Houston. “Inhibitors of the Menin‐MLL Interaction,” WO 2017/214367 A1, 2017.

K. Manna, H. M. Begam, and R. Jana, “Transition‐Metal‐Free Dehydrogenative Cyclization via α‐Csp 3‐H Activation of Ethers and Thioethers,” Synthesis 55, no. 10 (2022): 1543–1552, https://doi.org/10.1055/a‐2017‐6065.

Y. Chen and Y. Pang “Heterocyclic Compounds as BTK Inhibitors,” WO 2022/037649 A1, 2022.

T. Kurita, F. Aoki, T. Mizumoto, et al., “Facile and Convenient Method of Deuterium Gas Generation Using a Pd/C‐Catalyzed H2‐D2 Exchange Reaction and Its Application to Synthesis of Deuterium‐Labeled Compounds,” Chemistry: A European Journal 14, no. 11 (2008): 3371–3379, https://doi.org/10.1002/chem.200701245.

D. Hesk, “Highlights of C (Sp2)–H Hydrogen Isotope Exchange Reactions,” Journal of Labelled Compounds and Radiopharmaceuticals 63, no. 6 (2020): 247–265, https://doi.org/10.1002/jlcr.3801.

W. J. Kerr, G. J. Knox, and L. C. Paterson, “Recent Advances in Iridium(I) Catalysis Towards Directed Hydrogen Isotope Exchange,” Journal of Labelled Compounds and Radiopharmaceuticals 63, no. 6 (2020): 281–295, https://doi.org/10.1002/jlcr.3812.

J. Atzrodt, V. Derdau, T. Fey, and J. Zimmermann, “The Renaissance of H/D Exchange,” Angewandte Chemie International Edition 46, no. 41 (2007): 7744–7765, https://doi.org/10.1002/anie.200700039.

D. Hesk, G. Bignan, J. Lee, et al., “Synthesis of 3H, 14C and 13C6 Labelled Sch 58235,” Journal of Labelled Compounds and Radiopharmaceuticals 45, no. 2 (2002): 145–155, https://doi.org/10.1002/jlcr.539.

R. Simonsson, G. Stenhagen, C. Ericsson, and C. S. Elmore, “Synthesis of Ximelagatran, Melagatran, Hydroxymelagatran, and Ethylmelagatran in H‐3 Labeled Form,” Journal of Labelled Compounds and Radiopharmaceuticals 56, no. 6 (2013): 334–337, https://doi.org/10.1002/jlcr.3028.

H. Sajiki, N. Ito, H. Esaki, T. Maesawa, T. Maegawa, and K. Hirota, “Aromatic Ring Favorable and Efficient H‐D Exchange Reaction Catalyzed by Pt/C,” Tetrahedron Letters 46, no. 41 (2005): 6995–6998, https://doi.org/10.1016/j.tetlet.2005.08.067.

Y. Tian, B. Brož, F. Tureček, and A. Marek, “Tritium HIE With Electron‐Poor Tertiary Benzenesulfonamide Moiety; Application in Late‐Stage Labeling of T0901317,” Journal of Labelled Compounds and Radiopharmaceuticals 65, no. 47 (2021): 7–9, https://doi.org/10.1002/jlcr.3958.

A. Marek, M. H. F. Pedersen, S. B. Vogensen, R. P. Clausen, B. Frølund, and T. Elbert, “The Labeling of Unsaturated γ‐Hydroxybutyric Acid by Heavy Isotopes of Hydrogen: Iridium Complex‐Mediated H/D Exchange by C─H Bond Activation vs Reduction by Boro‐Deuterides/Tritides,” Journal of Labelled Compounds and Radiopharmaceuticals 59, no. 16 (2016): 476–483, https://doi.org/10.1002/jlcr.3432.

M. Daniel‐Bertrand, S. Garcia‐Argote, A. Palazzolo, et al., “Multiple Site Hydrogen Isotope Labelling of Pharmaceuticals,” Angewandte Chemie International Edition 59, no. 47 (2020): 21114–21120, https://doi.org/10.1002/anie.202008519.

A. Burhop, R. Weck, J. Atzrodt, and V. Derdau, “Hydrogen‐Isotope Exchange (HIE) Reactions of Secondary and Tertiary Sulfonamides and Sulfonylureas With Iridium(I) Catalysts,” European Journal of Organic Chemistry 2017, no. 11 (2017): 1418–1424, https://doi.org/10.1002/ejoc.201601599.

M. Valero, A. Burhop, K. Jess, et al., “Evaluation of a P,N‐Ligated Iridium(I) Catalyst in Hydrogen Isotope Exchange Reactions of Aryl and Heteroaryl Compounds,” Journal of Labelled Compounds and Radiopharmaceuticals 61, no. 4 (2018): 380–385, https://doi.org/10.1002/jlcr.3595.

S. Kopf, F. Bourriquen, W. Li, H. Neumann, K. Junge, and M. Beller, “Recent Developments for the Deuterium and Tritium Labeling of Organic Molecules,” Chemical Reviews 122, no. 6 (2022): 6634–6718, https://doi.org/10.1021/acs.chemrev.1c00795.

T. He, H. F. T. Klare, and M. Oestreich, “Perdeuteration of Deactivated Aryl Halides by H/D Exchange Under Superelectrophile Catalysis,” Journal of the American Chemical Society 144, no. 11 (2022): 4734–4738, https://doi.org/10.1021/jacs.2c00080.

M. Valero, A. Mishra, J. Blass, R. Weck, and V. Derdau, “Comparison of Iridium(I) Catalysts in Temperature Mediated Hydrogen Isotope Exchange Reactions,” ChemistryOpen 8, no. 9 (2019): 1183–1189, https://doi.org/10.1002/open.201900204.

D. S. Timofeeva, D. M. Lindsay, W. J. Kerr, and D. J. Nelson, “A Quantitative Empirical Directing Group Scale for Selectivity in Iridium‐Catalysed Hydrogen Isotope Exchange Reactions,” Catalysis Science & Technology 10, no. 21 (2020): 7249–7255, https://doi.org/10.1039/d0cy01597k.

G. Q. Hu, E. C. Li, H. H. Zhang, and W. Huang, “Ag(I)‐Mediated Hydrogen Isotope Exchange of Mono‐Fluorinated (Hetero)Arenes,” Organic & Biomolecular Chemistry 18, no. 34 (2020): 6627–6633, https://doi.org/10.1039/d0ob01273d.

C. N. Filer, “Ibotenic Acid: On the Mechanism of Its Conversion to [3H] Muscimol,” Journal of Radioanalytical and Nuclear Chemistry 318, no. 3 (2018): 2033–2038, https://doi.org/10.1007/s10967‐018‐6203‐8.

M. Saljoughian, H. Morimoto, and P. G. Williams, “A General Synthesis of Very High Specific Activity Tritiomethyl Iodide,” Journal of the Chemical Society 1, no. 6 (1990): 1803–1808, https://doi.org/10.1039/p19900001803.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...