Two novel members of Onygenales, Keratinophyton kautmanovae and K. keniense spp. nov. from soil
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
K3-G-2/026-2013
Lower Austria Science and Education Fund (NfB/GFF)
PubMed
39019978
PubMed Central
PMC11254920
DOI
10.1038/s41598-024-67475-y
PII: 10.1038/s41598-024-67475-y
Knihovny.cz E-zdroje
- Klíčová slova
- Chrysosporium asexual morph, Hair baiting method, Keratinophilic fungi, New taxa,
- MeSH
- DNA fungální genetika MeSH
- fylogeneze * MeSH
- mezerníky ribozomální DNA genetika MeSH
- Onygenales * genetika klasifikace izolace a purifikace MeSH
- půdní mikrobiologie * MeSH
- ribozomální DNA genetika MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Afrika MeSH
- Evropa MeSH
- Názvy látek
- DNA fungální MeSH
- mezerníky ribozomální DNA MeSH
- ribozomální DNA MeSH
Two new Keratinophyton species, K. kautmanovae sp. nov. and K. keniense sp. nov., isolated from soil samples originating from two different geographical and environmental locations (Africa and Europe) are described and illustrated. Phylogenetically informative sequences obtained from the internal transcribed spacer (ITS) region and the nuclear large subunit (LSU) rDNA, as well as their unique phenotype, fully support novelty of these two fungi for this genus. Based on ITS and LSU combined phylogeny, both taxa are resolved in a cluster with eight accepted species, including K. alvearium, K. chongqingense, K. hubeiense, K. durum, K. lemmensii, K. siglerae, K. submersum, and K. sichuanense. The new taxon, K. kautmanovae, is characterized by clavate, smooth to coarsely verrucose conidia, absence of arthroconidia, slow growth at 25 °C, and no growth at 30 °C, while K. keniense is morphologically unique with a high diversity of conidial shapes (clavate, filiform, globose, cymbiform and rhomboid). Both species are described based on their asexual, a chrysosporium-like morph. While the majority of hitherto described Keratinophyton taxa came from Europe, India and China, the new species K. keniense represents the first reported taxonomic novelty for this genus from Africa.
Department of Chemistry Faculty of Sciences Egerton University P O Box 536 20115 Egerton Kenya
Westerdijk Fungal Biodiversity Institute Uppsalalaan 8 3584 CT Utrecht The Netherlands
Zobrazit více v PubMed
Randhawa HS, Sandhu RS. Keratinophyton terreum gen. nov. sp. nov., a keratinophilic fungus from soil in India. Sabouraudia. 1964;3:251–257. doi: 10.1080/00362176485190421. PubMed DOI
Cano J, Guarro J. The genus Aphanoascus. Mycol. Res. 1990;94:355–377. doi: 10.1016/S0953-7562(09)80361-4. DOI
Cano J, et al. Molecular taxonomy of Aphanoascus and description of two new species from soil. Stud. Mycol. 2002;47:153–164.
Guarro, J., Gene, J., Stchigel, A. M. & Figueras, M. J. Atlas of Soil Ascomycetes. (CBS-KNAW Fungal Biodiversity Centre, 2012).
Sutton DA, et al. Isolation and characterization of a new fungal genus and species, Aphanoascella galapagosensis, from carapace keratitis of a Galapagos tortoise (Chelonoidis nigra microphyes) Med. Mycol. 2013;51:113–120. doi: 10.3109/13693786.2012.701767. PubMed DOI
Kandemir, H. et al.Phylogenetic and Ecological Reevaluation of the Order Onygenales (2022).
Labuda R, Bernreiter A, Hochenauer D, Kubatova A, Kandemir H, Schuller C. Molecular systematics of Keratinophyton: The inclusion of species formerly referred to Chrysosporium and description of four new species. Ima Fungus. 2021 doi: 10.1186/s43008-021-00070-2. PubMed DOI PMC
Li X, Zhang ZY, Chen WH, Liang JD, Liang ZQ, Han YF. Keratinophyton chongqingense sp. nov. and Keratinophyton sichuanense sp. nov., from soil in China. Int. J. Syst. Evol. Microbiol. 2022 doi: 10.1099/ijsem.0.005468. PubMed DOI
van Oorschot CAN. A revision of Chrysosporium and allied genera. Stud. Mycol. 1980;1:1–89.
Vidal P, Sanchez-Puelles JM, Milan D, Guarro J. Chrysosporium fluviale, a new keratinophilic species from river sediments. Mycol. Res. 2000;104:244–250. doi: 10.1017/S0953756299001082. DOI
Vidal P, Valmaseda M, Vinuesa MÁ, Guarro J. Two new species of Chrysosporium. Stud. Mycol. 2002;47:199–210.
Zhang, Y.-W. et al. Two new Chrysosporium (Onygenaceae, Onygenales) from China. Phytotaxa270, 7 10.11646/phytotaxa.270.3.5 (2016).
Zhang, Y.-W., Zeng, G.-P., Zou, X., Han, Y.-F., Liang, Z.-Q. & Qui, S.-Y. Two new keratinophilic fungal species. Phytotaxa303, 8 10.11646/phytotaxa.303.2.7 (2017).
Zhao YZ, Zhang ZF, Cai L, Peng WJ, Liu F. Four new filamentous fungal species from newly-collected and hive-stored bee pollen. Mycosphere. 2018;9:1089–1116. doi: 10.5943/mycosphere/9/6/3. DOI
Javorekova S, Labuda R, Makova J, Novak J, Medo J, Majercikova K. Keratinophilic fungi isolated from soils of long-term fold-grazed, degraded pastures in national parks of Slovakia. Mycopathologia. 2012;174:239–245. doi: 10.1007/s11046-012-9543-x. PubMed DOI
Crous, P. W. et al. Chrysosporium echinulatum Hubka, Mallátová, Cmokova & Kolarik, sp. nov. Persoonia38, 446 10.3767/003158517X698941 (2016).
de Hoog, G. S. et al. Atlas of Clinical Fungi. 4th Ed. (Foundation Atlas of Clinical Fungi, 2020).
Marchisio VF, Fusconi A, Rigo S. Keratinolysis and its morphological expression in hair digestion by airborne fungi. Mycopathologia. 1994;127:103–115. doi: 10.1007/Bf01103066. PubMed DOI
Doyle JJ, Doyle JL. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 1987;19:11–15.
Gardes M, Bruns TD. ITS primers with enhanced specificity for basidiomycetes-application to the identification of mycorrhizae and rust. Mol. Ecol. 1993;2:113–118. doi: 10.1111/j.1365-294X.1993. PubMed DOI
White, T.J., Lee, S. & Taylor, J.W. Amplification and Direct Sequencing of Fungal Ribosomal RNA Genes for Phylogenetics. 315‒322 (Academic Press, 1990).
Mori Y, Sato Y, Takamatsu S. Evolutionary analysis of the powdery mildew fungi using nucleotide sequences of the nuclear ribosomal DNA. Mycologia. 2000;92:74–93. doi: 10.1080/00275514.2000.12061132. DOI
Hall, T.A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl. Acids. Symp. Ser.41, 95–98 (1999).
Kalyaanamoorthy, S.M.B., Wong, T.K.F., von Haeseler, A. & Jermiin, L.S. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat. Methods14, 587–589 (2017). PubMed PMC
Trifinopoulos, J. N. L., von Haeseler, A. & Minh, B.Q. W-IQ-TREE: A fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res.44(W1), W232–23510.1093/nar/gkw256 (2016). PubMed PMC
Ronquist F, Huelsenbeck JP. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics. 2003;19:1572–1574. doi: 10.1093/bioinformatics/btg180. PubMed DOI
Page, R.D. TreeView: An application to display phylogenetic trees on personal computers. Comput. Appl. Biosci.12, 357–358 10.1093/bioinformatics/12.4.357 (1996). PubMed
Letunic, I. B. P. Interactive tree of life (iTOL) v4: Recent updates and new developments. Nucleic Acids Res.47, 256–259 10.1093/nar/gkz239 (2019). PubMed PMC
Cano J, Guarro J. Studies on keratinophilic fungi. III. Chrysosporium siglerae sp. nov. Mycotaxon. 1994;51:75–80.
Vanbreuseghem R. Technique biologique pour l´isolement, des dermatophytes du sol. Ann. Soc. Belge Med. Trop. 1952;32:173–178. PubMed
Papini R, Mancianti F, Grassotti G, Cardini G. Survey of keratinophilic fungi isolated from city park soils of Pisa, Italy. Mycopathologia. 1998;143:17–23. doi: 10.1023/a:1006919707839. PubMed DOI
Otčenášek M, Dvořák J, Kunert J. Geographic distribution of the geophilic dermatophytes in the soil. Mycopathol. Mycol. Appl. 1969;31:151–162. doi: 10.1007/BF02051220. PubMed DOI
Majzlan J, Lalinská B, Chovan M, Bläß U, Brecht B, Göttlicher J, Steininger R, Hug K, Ziegler S, Gescher J. A mineralogical, geochemical, and microbiological assessment of the antimony- and arsenic-rich neutral mine drainage tailings near Pezinok, Slovakia. Am. Miner. 2011;96:1–13. doi: 10.2138/am.2011.3556. DOI
Kushwaha, R. K. & Guarro, J. Biology of Dermatophytes and Other Keratinophilic Fungi. (Revista Iberoamericana de Micologia, 2000).
Lalinská-Voleková B, Majzlan J, Klimko T, Chovan M, Kucerova G, Michňová J, Hovorič R, Goettlicher J, Steininger R. Mineralogy of weathering products of Fe–As–Sb mine wastes and soils at several sb deposits in Slovakia. Can. Miner. 2012;50:1207–1226. doi: 10.3749/canmin.50.2.481. DOI
Satognon F, Lelei JJ, Owido SFO. Performance of apical rooted cuttings of potato grown in Mollic Andosols under different nitrogen fertilization and irrigation regimes. Heliyon. 2021;7:e07999. doi: 10.1016/j.heliyon.2021.e07999. PubMed DOI PMC
Ngetich KF, Diels J, Shisanya CA, Mugwe JN, Mucheru-muna M, Mugendi DN. Effects of selected soil and water conservation techniques on runoff, sediment yield and maize productivity under sub-humid and semi-arid conditions in Kenya. Catena. 2014;121:288–296. doi: 10.1016/j.catena.2014.05.026. DOI
Hubalek, Z. Biology of Dermatophytes and Other Keratinophilic Fungi. 93–103 (Revista Iberoamericana de Micología, 2000).
Cabanes FJ, Sutton DA, Guarro J. Chrysosporium-related fungi and reptiles: A fatal attraction. PLoS Pathog. 2014;10:e1004367. doi: 10.1371/journal.ppat.1004367. PubMed DOI PMC
Sigler, L. Pathogenic Fungi in Humans and Animals (ed. Howard, D.H.). 195–236 (Marcel Dekker, Inc., 2003).
Rippon, J. V. Medical Mycology. Vol. 2 (W.B. Saunders Company, 1982).
Papini R, Mancianti F, Grassotti G, Cardini G. Survey of keratinophilic fungi isolated from city park soils of Pisa, Italy. Mycopathologia. 1998;143:17–23. doi: 10.1023/A:1006919707839. PubMed DOI
Zhou N, Zhang Y, Liu F, Cai L. Halophilic and thermotolerant Gymnoascus species from several special environments, China. Mycologia. 2016;108:179–191. doi: 10.3852/15-086. PubMed DOI