Unravelling the thermodynamic properties of soil ecosystems in mature beech forests

. 2024 Jul 18 ; 14 (1) : 16644. [epub] 20240718

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39025918

Grantová podpora
PID2022-119204RB-C22 Ministry of Science and Innvation
451-03-66/2024-03/200026). Ministry of Science, Technological Development and Innovation of Republic of Serbia
RYC2018-024939-I Agencia Estatal de Investigación
ED431F-2020/02 GAIN

Odkazy

PubMed 39025918
PubMed Central PMC11258282
DOI 10.1038/s41598-024-67590-w
PII: 10.1038/s41598-024-67590-w
Knihovny.cz E-zdroje

Thermodynamics is a vast area of knowledge with a debatable role in explaining the evolution of ecosystems. In the case of soil ecosystems, this role is still unclear due to difficulties in determining the thermodynamic functions that are involved in the survival and evolution of soils as living systems. The existing knowledge is largely based on theoretical approaches and has never been applied to soils using thermodynamic functions that have been experimentally determined. In this study, we present a method for the complete experimental thermodynamic characterization of soil organic matter. This method quantifies all the thermodynamic functions for combustion and formation reactions which are involved in the thermodynamic principles governing the evolution of the universe. We applied them to track the progress of soil organic matter with soil depth in mature beech forests. Our results show that soil organic matter evolves to a higher degree of reduction as it is mineralized, yielding products with lower carbon but higher energy content than the original organic matter used as reference. These products have higher entropy than the original one, demonstrating how the soil ecosystem evolves with depth, in accordance with the second law of thermodynamics. The results were sensitive to soil organic matter transformation in forests under different management, indicating potential applicability in elucidating the energy strategies for evolution and survival of soil systems as well as in settling their evolutionary states.

Zobrazit více v PubMed

Wang J, Shi X. Soil biodiversity in natural forests potentially exhibits higher resistance than planted forest under global warming. Front. Plant Sci. 2016 doi: 10.3389/fpls.2023.1135549. PubMed DOI PMC

Knoepp JD, et al. History of forest soils knowledge and research. Dev. Soil Sci. 2019;36:43–55. doi: 10.1016/B978-0-444-63998-1.00004-5. DOI

Prigogine, I. Étude Thermodynamique des Processus Irreversibles. Thesis dissertation. Desoer, Liège (1947).

Schrödinger E. What is Life? Cambridge University Press; 1967.

Bellamy DJ, Clarke PH. Application of the second law of thermodynamics and Le Chaterlier’s principle to the developing ecosystem. Nature. 1968;218:1180. doi: 10.1038/2181180a0. DOI

Odum EP. The strategy of ecosystems development. Science. 1969;164:262–270. doi: 10.1126/science.164.3877.262. PubMed DOI

Addiscott TM. Entropy and sustainability. Eur. J. Soil Sci. 1995;46:161–168. doi: 10.1111/j.1365-2389.1995.tb01823.x. DOI

Addiscott TM. Entropy, non-linearity and hierarchy in ecosystems. Geoderma. 2010;160:57–63. doi: 10.1016/j.geoderma.2009.11.029. DOI

Skene KR. Life’s a gas: A thermodynamic theory of biological evolution. Entropy. 2015;17:5522–5548. doi: 10.3390/e17085522. DOI

Hansen LD, Popovic M, Tolley HD, Woodfield BF. Laws of evolution parallel the laws of thermodynamics. J. Chem. Thermodyn. 2018;124:141–148. doi: 10.1016/j.jct.2018.05.005. DOI

Meschel SV. A brief story of heat measurements by calorimetry with emphasis on the thermochemistry of metallic and metal-nonmetal compounds. CALPHAD. 2020;68:101714. doi: 10.1016/j.calphad.2019.101714. DOI

Dell’Abate MT, Benedetti A, Brookes PC. Hyphenated techniques of thermal analysis for characterization of soil humid substances. J. Sep. Sci. 2003;26:433–440. doi: 10.1002/jssc.200390057. DOI

López-Capel E, Bol R, Manning DAC. Application of simultaneous thermal analysis mass spectrometry and stable carbon isotope analysis in a carbon sequestration study. Rapid Commun. Mass Spectrom. 2005;19(22):3192–3198. doi: 10.1002/rcm.2145. PubMed DOI

Plante AF, Fernández JM, Leifeld J. Application of thermal analysis techniques in soil science. Geoderma. 2009;153:1–10. doi: 10.1016/j.geoderma.2009.08.016. DOI

Guan Y, Evans PM, Kemp RB. Specific heat flow rate: An on-line monitor and potential control variable of specific metabolic rate in animal cell culture that combines microcalorimetry with dielectric spectroscopy. Biotechnol. Bioeng. 1997;58(5):453–559. doi: 10.1002/(SICI)1097-0290(19980605)58:5<464::AID-BIT2>3.0.CO;2-B. PubMed DOI

Lamprecht I. Calorimetry and thermodynamics of living systems. Thermochim. Acta. 2003;405:1–13. doi: 10.1016/S0040-6031(03)00123-0. DOI

Forrest WW. In: Microcalorimetry. Norris JR, editor. Academic Press; 1972. pp. 285–318.

Ljungholm K, Norén B, Sköld R, Wadsö I. Use of microcalorimetry for the characterization of microbial activity in soil. Oikos. 1979;33:15–23. doi: 10.2307/3544506. DOI

Thornton WM. The relation of oxygen to the heat of combustion of organic compounds. Phil. Mag. 1917;33:196–203. doi: 10.1080/14786440208635627. DOI

Gary CC, Frossard JS, Chenevard D. Heat of combustion, degree of reduction and carbon content: 3 interrelated methods of estimating the construction cost of plant tissues. Agronomie. 1995;15:59–69. doi: 10.1051/agro:19950107. DOI

Sandler SI, Orbey H. On the thermodynamics of microbial growth processes. Biotechnol. Bioeng. 1991;38:697–718. doi: 10.1002/bit.260380704. PubMed DOI

Battley EH. An empirical method for estimating the entropy of formation and the absolute entropy of dried microbial biomass for use in studies on the thermodynamics of microbial growth. Thermochim. Acta. 1999;326:7–15. doi: 10.1016/S0040-6031(98)00584-X. DOI

Von Stockar U, Maskow T, Liu J, Marison IW, Patiño R. Thermodynamics of microbial growth and metabolism: An analysis of the current situation. J. Bio-technol. 2006;121:517–533. PubMed

Barros N, Fernández I, Byrne KA, Jovani-Sancho J, Ros-Magriñan E, Hansen LD. Thermodynamics of soil organic matter decomposition in semi-natural oak (Quercus) woodland in southwest Ireland. Oikos. 2020;129:1632–1644. doi: 10.1111/oik.07261. DOI

Barros N, Pérez-Cruzado C, Molina-Valero JA, Martínez-Calvo A, Proupín J, Rodríguez-Añón J. Comparison of two enthalpic models for the thermodynamic characterization of the soil organic matter in beech and oak forests. J. Thermal. Anal. Cal. 2023;148:10175–10188. doi: 10.1007/s10973-023-12359-y. DOI

Willians EK, Plante AF. A bioenergetic framework for assessing soil organic matter persistence. Front. Earth Sci. 2018;6:143. doi: 10.3389/feart.2018.00143. DOI

Henneron L, et al. Bioenergetic control of soil carbon dynamics across depth. Nat. Commun. 2022;13:7676. doi: 10.1038/s41467-022-34951-w. PubMed DOI PMC

Malucelli LC, et al. Biochar higher heating value estimative using thermogravimetric analysis. J. Thermal. Anal. Cal. 2020;139:2215–2220. doi: 10.1007/s10973-019-08597-8. DOI

García R, Pizarro C, Lavín AG, Bueno JL. Characterization of Spanish biomass wastes for energy use. Bioresour. Technol. 2012;103:249–258. doi: 10.1016/j.biortech.2011.10.004. PubMed DOI

Rovira, P., Henriques, R. Energy content of soil organic matter as studied by bomb calorimetry. In Goldschmidt Conference Abstracts 1761 (2011).

Lorenz, M., Diehl, D., Maskow, T., Thiele-Bruhn, S. Energy content of soil organic matter in soil profiles investigated by bomb calorimetry and DSC-TG. In 25th EGU General Assembly Abstracts. EGU-6542. 10.5194/egusphere-egu23-6542 (2024).

Masiello CA, Gallagher ME, Randerson JT, Deco RM, Chadwick OA. Evaluating two experimental approaches for measuring ecosystem carbon oxidation state and oxidative ratio. J. Geophys. Res. 2008;113:G03010. doi: 10.1029/2007JG000534. DOI

LaRowe DE, Van Cappellen P. Degradation of natural organic matter: A thermodynamic analysis. Geochim. et Cosmochim. Acta. 2011;75(8):2030–2042. doi: 10.1016/j.gca.2011.01.020. DOI

Patel SA, Erickson LE. Estimations of heat of combustion of biomass from elemental analysis using available electron concepts. Biotechnol. Bioeng. 1981;23:2051–2067. doi: 10.1002/bit.260230910. DOI

Von Stockar U. Biothermodynamics of live cells: Energy dissipation and heat generation in cellular structures. In: van der Wielen M, Von Stockar U, editors. Biothermodynamics: The role of thermodynamics in Biochemical Engineering. Springer; 2013. pp. 475–534.

Demirel Y. Nonequilibrium thermodynamics: Transport and rate processes in physical Chemical and Biological systems. Elsevier; 2014.

Davidson EA, Janssens IA. Temperature sensitivity of soil soil carbon decomposition and feedbacks to climate change. Nature. 2006;440:165. doi: 10.1038/nature04514. PubMed DOI

Lehmann J, Kleber M. The contentious nature of soil organic matter. Nature. 2015;528:60. doi: 10.1038/nature16069. PubMed DOI

Bosatta E, Agren GI. Soil organic matter quality interpreted thermodynamically. Soil Biol. Biochem. 1999;31(13):1889–1891. doi: 10.1016/S0038-0717(99)00105-4. DOI

Atkins PW, de Paula J. Physical chemistry: Thermodynamics, structure, and change. 10. W. H. Freeman and Company; 2014.

Popovic M, Minceva M. Standard thermodynamic properties, biosynthesis, and driving force of growth of five agricultural plants. Front. Plant Sci. 2021;12:671868. doi: 10.3389/fpls.2021.671868. PubMed DOI PMC

Oades JM. The retention of organic matter in soils. Biogeochemistry. 1988;5:35–70. doi: 10.1007/BF02180317. DOI

Rumpel C, Kögel-Knabner I. Deep soil organic matter—A key but poorly understood component of terrestrial C cycle. Plant Soil. 2011;338:143–158. doi: 10.1007/s11104-010-0391-5. DOI

Kondepudi DK, De Bari B, Dixon JA. Dissipative structures, organisms and evolution. Entropie. 2020;22(11):1305. doi: 10.3390/e22111305. PubMed DOI PMC

Prigogine I. Order through fluctuation: self-organization and social system. In: Jantsch E, Waddington CH, editors. Evolution and consciousness. Addison-Wesley; 1976. pp. 93–133.

Chakrawal A, Herrmann AM, Manzoni S. Leveraging energy flows to quantify microbial traits in soils. Soil Biol. Biochem. 2021;155:108169. doi: 10.1016/j.soilbio.2021.108169. DOI

Ghetti O, Ricca L, Angelini L. Thermal analysis of biomass and corresponding pyrolysis products. Fuel. 1996;75(5):565–573. doi: 10.1016/0016-2361(95)00296-0. DOI

Baraldi P, Beltrami C, Cassai C, Molinari L, Zunarelli R. Measurements of combustión enthalpy of solids by DSC. Mater. Chem. Phys. 1998;53:252–255. doi: 10.1016/S0254-0584(98)00010-8. DOI

Popovic M. Thermodynamic properties of microorganisms: determination and analysis of enthalpy, entropy, and Gibbs free energy of biomass, cells and colonies of 32 microorganism species. Heliyon. 2019;5(6):e01950. doi: 10.1016/j.heliyon.2019.e01950. PubMed DOI PMC

Chase, M. W. NIST-JANEF Thermochemical Tables, Fourth Edition. In Journal of Physical Chemistry: Vol. Monograph. (1998).

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...