Accelerated mitochondrial evolution and asymmetric fitness of hybrids contribute to the persistence of Helix thessalica in the Helix pomatia range

. 2024 Aug ; 33 (16) : e17474. [epub] 20240719

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39031116

Grantová podpora
UNCE/24/SCI/006 Univerzita Karlova v Praze

Interbreeding and introgression between recently diverged species is common. However, the processes that prevent these species from merging where they co-occur are not well understood. We studied the mechanisms that allowed an isolated group of populations of the snail Helix thessalica to persist within the range of the related Helix pomatia despite high gene flow. Using genomic cline analysis, we found that the nuclear gene flow between the two taxa across the mosaic hybrid zone was not different from that expected under neutral admixture, but that the exchange of mtDNA was asymmetric. Tests showed that there is relaxed selection in the mitochondrial genome of H. thessalica and that the substitution rate is elevated compared to that of H. pomatia. A lack of hybrids that combine the mtDNA of H. thessalica with a mainly (>46%) H. pomatia genomic background indicates that the nuclear-encoded mitochondrial proteins of H. pomatia are not well adapted to the more rapidly evolving proteins and RNAs encoded by the mitochondrion of H. thessalica. The presumed reduction of fitness of hybrids with the fast-evolving mtDNA of H. thessalica and a high H. pomatia ancestry, similar to 'Darwin's Corollary to Haldane's rule', resulted in a relative loss of H. pomatia nuclear ancestry compared to H. thessalica ancestry in the hybrid zone. This probably prevents the H. thessalica populations from merging quickly with the surrounding H. pomatia populations and supports the hypothesis that incompatibilities between rapidly evolving mitochondrial genes and nuclear genes contribute to speciation.

Zobrazit více v PubMed

Barreto, F. S., Watson, E. T., Lima, T. G., Willett, C. S., Edmands, S., Li, W., & Burton, R. S. (2018). Genomic signatures of mitonuclear coevolution across populations of Tigriopus californicus. Nature Ecology & Evolution, 2, 1250–1257. https://doi.org/10.1038/s41559‐018‐0588‐1

Barton, N. H., & Hewitt, G. M. (1985). Analysis of hybrid zones. Annual Review of Ecology and Systematics, 16(1), 113–148. https://doi.org/10.1146/annurev.es.16.110185.000553

Bateson, W. (1909). Heredity and variation in modern lights. In A. C. Seward (Ed.), Darwin and modern science (pp. 85–101). Cambridge University Press. https://doi.org/10.5962/bhl.title.94199

Bernt, M., Donath, A., Jühling, F., Externbrink, F., Florentz, C., Fritzsch, G., Pütz, J., Middendorf, M., & Stadler, P. F. (2013). MITOS: Improved de novo metazoan mitochondrial genome annotation. Molecular Phylogenetics and Evolution, 69(2), 313–319. https://doi.org/10.1016/j.ympev.2012.08.023

Bolnick, D. I., Turelli, M., López‐Fernández, H., Wainwright, P. C., & Near, T. J. (2008). Accelerated mitochondrial evolution and “Darwin's Corollary”: Asymmetric viability of reciprocal F1 hybrids in centrarchid fishes. Genetics, 178(2), 1037–1048. https://doi.org/10.1534/genetics.107.081364

Bowcock, A. M., Ruiz‐Linares, A., Tomfohrde, J., Minch, E., Kidd, J. R., & Cavalli‐Sforza, L. L. (1994). High resolution of human evolutionary trees with polymorphic microsatellites. Nature, 368(6470), 455–457. https://doi.org/10.1038/368455a0

Brandvain, Y., Pauly, G. B., May, M. R., & Turelli, M. (2014). Explaining Darwin's corollary to Haldane's rule: The role of mitonuclear interactions in asymmetric postzygotic isolation among toads. Genetics, 197(2), 743–747. https://doi.org/10.1534/genetics.113.161133

Bryant, D., & Moulton, V. (2004). Neighbor‐Net: An agglomerative method for the construction of phylogenetic networks. Molecular Biology and Evolution, 21(2), 255–265. https://doi.org/10.1093/molbev/msh018

Buerkle, C. A. (2005). Maximum‐likelihood estimation of a hybrid index based on molecular markers. Molecular Ecology Notes, 5(3), 684–687. https://doi.org/10.1111/j.1471‐8286.2005.01011.x

Buerkle, C. A., & Lexer, C. (2008). Admixture as the basis for genetic mapping. Trends in Ecology & Evolution, 23, 686–694. https://doi.org/10.1016/j.tree.2008.07.008

Burton, R. S. (2022). The role of mitonuclear incompatibilities in allopatric speciation. Cellular and Molecular Life Sciences, 79(2), 103. https://doi.org/10.1007/s00018‐021‐04059‐3

Burton, R. S., & Barreto, F. S. (2012). A disproportionate role for mtDNA in Dobzhansky–Muller incompatibilities? Molecular Ecology, 21(20), 4942–4957. https://doi.org/10.1111/mec.12006

Burton, R. S., Ellison, C. K., & Harrison, J. S. (2006). The sorry state of F2 hybrids: Consequences of rapid mitochondrial DNA evolution in allopatric populations. The American Naturalist, 168, S14–S24. https://doi.org/10.1086/509046

Burton, R. S., Pereira, R. J., & Barreto, F. S. (2013). Cytonuclear genomic interactions and hybrid breakdown. Annual Review of Ecology, Evolution, and Systematics, 44, 281–302. https://doi.org/10.1146/annurev‐ecolsys‐110512‐135758

Butlin, R. K., & Smadja, C. M. (2018). Coupling, reinforcement, and speciation. The American Naturalist, 191(2), 155–172. https://doi.org/10.1086/695136

Calvo, S. E., Clauser, K. R., & Mootha, V. K. (2016). MitoCarta2.0: An updated inventory of mammalian mitochondrial proteins. Nucleic Acids Research, 44, D1251–D1257. https://doi.org/10.1093/nar/gkv1003

Chen, S., Zhou, Y., Chen, Y., & Gu, J. (2018). fastp: An ultra‐fast all‐in‐one FASTQ preprocessor. Bioinformatics, 34(17), i884–i890. https://doi.org/10.1093/bioinformatics/bty560

Dobzhansky, T. (1936). Studies on hybrid sterility. II. Localization of sterility factors in Drosophila pseudoobscura hybrids. Genetics, 21, 113–135. https://doi.org/10.1093/genetics/21.2.113

Donath, A., Jühling, F., Al‐Arab, M., Bernhart, S. H., Reinhardt, F., Stadler, P. F., Middendorf, M., & Bernt, M. (2019). Improved annotation of protein‐coding genes boundaries in metazoan mitochondrial genomes. Nucleic Acids Research, 47(20), 10543–10552. https://doi.org/10.1093/nar/gkz833

Edelman, N. B., & Mallet, J. (2021). Prevalence and adaptive impact of introgression. Annual Review of Genetics, 55, 265–283. https://doi.org/10.1146/annurev‐genet‐021821‐020805

Ellison, C. K., Niehuis, O., & Gadau, J. (2008). Hybrid breakdown and mitochondrial dysfunction in hybrids of Nasonia parasitoid wasps. Journal of Evolutionary Biology, 21(6), 1844–1851. https://doi.org/10.1111/j.1420‐9101.2008.01608.x

Falush, D., Stephens, M., & Pritchard, J. K. (2007). Inference of population structure using multilocus genotype data: Dominant markers and null alleles. Molecular Ecology Notes, 7, 574–578. https://doi.org/10.1111/j.1471‐8286.2007.01758.x

Franchini, P., Monné Parera, D., Kautt, A. F., & Meyer, A. (2017). quaddRAD: A new high‐multiplexing and PCR duplicate removal ddRAD protocol produces novel evolutionary insights in a nonradiating cichlid lineage. Molecular Ecology, 26(10), 2783–2795. https://doi.org/10.1111/mec.14077

Funk, D. J., & Omland, K. E. (2003). Species‐level paraphyly and polyphyly: Frequency, causes, and consequences, with insights from animal mitochondrial DNA. Annual Review of Ecology, Evolution, and Systematics, 34(1), 397–423. https://doi.org/10.1146/annurev.ecolsys.34.011802.132421

Germain, R. M., Hart, S. P., Turcotte, M. M., Otto, S. P., Sakarchi, J., Rolland, J., Usui, T., Angert, A. L., Schluter, D., Bassar, R. D., Waters, M. T., Henao‐Diaz, F., & Siepielski, A. M. (2021). On the origin of coexisting species. Trends in Ecology & Evolution, 36(4), 284–293. https://doi.org/10.1016/j.tree.2020.11.006

Ghiselli, F., Gomes‐dos‐Santos, A., Adema, C. M., Lopes‐Lima, M., Sharbrough, J., & Boore, J. L. (2021). Molluscan mitochondrial genomes break the rules. Philosophical Transactions of the Royal Society, B: Biological Sciences, 376(1825), 20200159. https://doi.org/10.1098/rstb.2020.0159

Gompert, Z., & Buerkle, C. A. (2011). Bayesian estimation of genomic clines. Molecular Ecology, 20(10), 2111–2127. https://doi.org/10.1111/j.1365‐294X.2011.05074.x

Gompert, Z., & Buerkle, C. A. (2012). bgc: Software for Bayesian estimation of genomic clines. Molecular Ecology Resources, 12(6), 1168–1176. https://doi.org/10.1111/1755‐0998.12009.x

Gompert, Z., Mandeville, E. G., & Buerkle, C. A. (2017). Analysis of population genomic data from hybrid zones. Annual Review of Ecology, Evolution, and Systematics, 48, 207–229. https://doi.org/10.1146/annurev‐ecolsys‐110316‐022652

Grabherr, M. G., Haas, B. J., Yassour, M., Levin, J. Z., Thompson, D. A., Amit, I., Adiconis, X., Fan, L., Raychowdhury, R., Zeng, Q., Chen, Z., Mauceli, E., Hacohen, N., Gnirke, A., Rhind, N., di Palma, F., Birren, B. W., Nusbaum, C., Lindblad‐Toh, K., … Regev, A. (2011). Full‐length transcriptome assembly from RNA‐Seq data without a reference genome. Nature Biotechnology, 29(7), 644–652. https://doi.org/10.1038/nbt.1883

Gröning, J., & Hochkirch, A. (2008). Reproductive interference between animal species. The Quarterly Review of Biology, 83(3), 257–282. https://doi.org/10.1086/590510

Harrison, J. S., & Burton, R. S. (2006). Tracing hybrid incompatibilities to single amino acid substitutions. Molecular Biology and Evolution, 23, 559–564. https://doi.org/10.1093/molbev/msj058

Harrison, R. G. (1990). Hybrid zones: Windows on evolutionary process. Oxford Surveys in Evolutionary Biology, 7, 69–128.

Hausdorf, B. (2011). Progress toward a general species concept. Evolution, 65, 923–931. https://doi.org/10.1111/j.1558‐5646.2011.01231.x

Hennig, C., & Hausdorf, B. (2020). Package ‘prabclus’: Functions for clustering of presence‐absence, abundance and multilocus genetic data. R Package Version 2.3‐2.

Hill, G. E. (2016). Mitonuclear coevolution as the genesis of speciation and the mitochondrial DNA barcode gap. Ecology and Evolution, 6(16), 5831–5842. https://doi.org/10.1002/ece3.2338

Hill, G. E. (2019). Reconciling the mitonuclear compatibility species concept with rampant mitochondrial introgression. Integrative and Comparative Biology, 59(4), 912–924. https://doi.org/10.1093/icb/icz019

Hill, G. E. (2020). Mitonuclear compensatory coevolution. Trends in Genetics, 36(6), 403–414. https://doi.org/10.1016/j.tig.2020.03.002

Huson, D. H., & Bryant, D. (2006). Application of phylogenetic networks in evolutionary studies. Molecular Biology and Evolution, 23, 254–267. https://doi.org/10.1093/molbev/msj030

Irwin, D., & Schluter, D. (2022). Hybridization and the coexistence of species. The American Naturalist, 200(3), E93–E109. https://doi.org/10.1086/720365

Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A., & Jermiin, L. S. (2017). ModelFinder: Fast model selection for accurate phylogenetic estimates. Nature Methods, 14(6), 587–589. https://doi.org/10.1038/nmeth.4285

Katoh, K., & Standley, D. M. (2013). MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Molecular Biology and Evolution, 30, 772–780. https://doi.org/10.1093/molbev/mst010

Kopelman, N. M., Mayzel, J., Jakobsson, M., Rosenberg, N. A., & Mayrose, I. (2015). Clumpak: A program for identifying clustering modes and packaging population structure inferences across K. Molecular Ecology Resources, 15(5), 1179–1191. https://doi.org/10.1111/1755‐0998.12387

Korábek, O., Adamcová, T., Proćków, M., Petrusek, A., Hausdorf, B., & Juřičková, L. (2023). In both directions: Expansions of European land snails to the north and south from glacial refugia. Journal of Biogeography, 50, 654–668. https://doi.org/10.1111/jbi.14531

Korábek, O., & Hausdorf, B. (2024). ddRAD analysis of a hybrid zone between two Helix species. https://www.ncbi.nlm.nih.gov/bioproject

Korábek, O., Juřičková, L., & Petrusek, A. (2016a). Splitting the Roman snail Helix pomatia Linnaeus, 1758 (Stylommatophora: Helicidae) into two: Redescription of the forgotten Helix thessalica Boettger, 1886. Journal of Molluscan Studies, 82, 11–22. https://doi.org/10.1093/mollus/eyv048

Korábek, O., Juřičková, L., & Petrusek, A. (2016b). Hlemýžď pruhovaný, nový druh pro evropskou i českou faunu. Živa, 64(102), 31–34.

Korábek, O., Juřičková, L., & Petrusek, A. (2022). Diversity of land snail tribe Helicini (Gastropoda: Stylommatophora: Helicidae): Where do we stand after 20 years of sequencing mitochondrial markers? Diversity, 14(1), 24. https://doi.org/10.3390/d14010024

Kosakovsky Pond, S. L., Poon, A. F., Velazquez, R., Weaver, S., Hepler, N. L., Murrell, B., Shank, S. D., Rife Magalis, B., Bouvier, D., Nekrutenko, A., Wisotsky, S., Spielman, S. J., Frost, S. D. W., & Muse, S. V. (2020). HyPhy 2.5—A customizable platform for evolutionary hypothesis testing using phylogenies. Molecular Biology and Evolution, 37(1), 295–299. https://doi.org/10.1093/molbev/msz197

Langmead, B., & Salzberg, S. L. (2012). Fast gapped‐read alignment with Bowtie 2. Nature Methods, 9(4), 357–359. https://doi.org/10.1038/nmeth.1923

Loewe, L. (2006). Quantifying the genomic decay paradox due to Muller's ratchet in human mitochondrial DNA. Genetics Research, 87, 133–159. https://doi.org/10.1017/S0016672306008123

Mallet, J. (1995). A species definition for the modern synthesis. Trends in Ecology & Evolution, 10, 294–299. https://doi.org/10.1016/0169‐5347(95)90031‐4

Mallet, J. (2005). Hybridization as an invasion of the genome. Trends in Ecology & Evolution, 20(5), 229–237. https://doi.org/10.1016/j.tree.2005.02.010

Martin, B. T., Chafin, T. K., Douglas, M. R., & Douglas, M. E. (2021). ClineHelpR: An R package for genomic cline outlier detection and visualization. BMC Bioinformatics, 22(1), 501. https://doi.org/10.1186/s12859‐021‐04423‐x

Mikkelsen, E. K., & Irwin, D. (2021). Ongoing production of low‐fitness hybrids limits range overlap between divergent cryptic species. Molecular Ecology, 30(16), 4090–4102. https://doi.org/10.1111/mec.16015

Muller, H. J. (1942). Isolating mechanisms, evolution, and temperature. Biological Symposia, 6, 71–125.

Neubert, E. (2014). Revision of Helix Linnaeus, 1758 in its eastern Mediterranean distribution area, and reassignment of Helix godetiana Kobelt, 1878 to Maltzanella Hesse, 1917 (Gastropoda, Pulmonata, Helicidae). Contributions to Natural History, 26, 1–200.

Nguyen, L.‐T., Schmidt, H. A., von Haeseler, A., & Minh, B. Q. (2015). IQ‐TREE: A fast and effective stochastic algorithm for estimating maximum likelihood phylogenies. Molecular Biology and Evolution, 32, 268–274. https://doi.org/10.1093/molbev/msu300

Niehuis, O., Judson, A. K., & Gadau, J. (2008). Cytonuclear genic incompatibilities cause increased mortality in male F2 hybrids of Nasonia giraulti and N. vitripennis. Genetics, 178, 413–426. https://doi.org/10.1534/genetics.107.080523

Osada, N., & Akashi, H. (2012). Mitochondrial–nuclear interactions and accelerated compensatory evolution: Evidence from the primate cytochrome c oxidase complex. Molecular Biology and Evolution, 29(1), 337–346. https://doi.org/10.1093/molbev/msr211

Palumbi, S., Martin, A., Romanco, S., McMillan, W. O., Stice, L., & Grabowski, G. (1991). The simple fool's guide to PCR. Department of Zoology, University of Hawaii.

Paris, J. R., Stevens, J. R., & Catchen, J. M. (2017). Lost in parameter space: A road map for STACKS. Methods in Ecology and Evolution, 8(10), 1360–1373. https://doi.org/10.1111/2041‐210X.12775

Parmakelis, A., Kotsakiozi, P., & Rand, D. (2013). Animal mitochondria, positive selection and cyto‐nuclear coevolution: Insights from pulmonates. PLoS One, 8(4), e61970.

Pereira, R. J., Lima, T. G., Pierce‐Ward, N. T., Chao, L., & Burton, R. S. (2021). Recovery from hybrid breakdown reveals a complex genetic architecture of mitonuclear incompatibilities. Molecular Ecology, 30(23), 6403–6416. https://doi.org/10.1111/mec.15985

Pfennig, D. W., & Pfennig, K. S. (2010). Character displacement and the origins of diversity. The American Naturalist, 176(S1), S26–S44. https://doi.org/10.1086/657056

Pigot, A. L., & Tobias, J. A. (2013). Species interactions constrain geographic range expansion over evolutionary time. Ecology Letters, 16(3), 330–338. https://doi.org/10.1111/ele.12043

Postel, Z., & Touzet, P. (2020). Cytonuclear genetic incompatibilities in plant speciation. Plants, 9(4), 487. https://doi.org/10.3390/plants9040487

Pritchard, J. K., Stephens, M., & Donnelly, P. (2000). Inference of population structure using multilocus genotype data. Genetics, 155(2), 945–959. https://doi.org/10.1093/genetics/155.2.945

Pritchard, V. L., & Edmands, S. (2013). The genomic trajectory of hybrid swarms: Outcomes of repeated crosses between populations of Tigriopus californicus. Evolution, 67, 774–791. https://doi.org/10.1111/j.1558‐5646.2012.01814.x

Pulido‐Santacruz, P., Aleixo, A., & Weir, J. T. (2018). Morphologically cryptic Amazonian bird species pairs exhibit strong postzygotic reproductive isolation. Proceedings of the Royal Society B: Biological Sciences, 285(1874), 20172081. https://doi.org/10.1098/rspb.2017.2081

Rand, D. M., Haney, R. A., & Fry, A. J. (2004). Cytonuclear coevolution: The genomics of cooperation. Trends in Ecology & Evolution, 19, 645–653. https://doi.org/10.1016/j.tree.2004.10.003

Ranwez, V., Chantret, N., & Delsuc, F. (2021). Aligning protein‐coding nucleotide sequences with MACSE. In K. Katoh (Ed.), Multiple Sequence Alignment (Vol. 2231, pp. 51–70). Springer. https://doi.org/10.1007/978‐1‐0716‐1036‐7_4

Rieseberg, L. H., Whitton, J., & Gardner, K. (1999). Hybrid zones and the genetic architecture of a barrier to gene flow between two sunflower species. Genetics, 152, 713–727. https://doi.org/10.1093/genetics/152.2.713

Rivera‐Colón, A. G., & Catchen, J. (2022). Population genomics analysis with RAD, reprised: Stacks 2. In C. Verde & D. Giordano (Eds.), Marine genomics: Methods and protocols (pp. 99–149). Springer. https://doi.org/10.1007/978‐1‐0716‐2313‐8_7

Rochette, N. C., & Catchen, J. M. (2017). Deriving genotypes from RAD‐seq short‐read data using stacks. Nature Protocols, 12(12), 2640–2659. https://doi.org/10.1038/nprot.2017.123

Rochette, N. C., Rivera‐Colón, A. G., & Catchen, J. M. (2019). Stacks 2: Analytical methods for paired‐end sequencing improve RADseq‐based population genomics. Molecular Ecology, 28(21), 4737–4754. https://doi.org/10.1111/mec.15253

Romero, P. E., Weigand, A. M., & Pfenninger, M. (2016). Positive selection on panpulmonate mitogenomes provide new clues on adaptations to terrestrial life. BMC Evolutionary Biology, 16, 164.

Scheel, B. M., & Hausdorf, B. (2012). Survival and differentiation of subspecies of the land snail Charpentieria itala in mountain refuges in the southern Alps: Differentiation in mountain refuges. Molecular Ecology, 21(15), 3794–3808. https://doi.org/10.1111/j.1365‐294X.2012.05649.x

Shimodaira, H. (2002). An approximately unbiased test of phylogenetic tree selection. Systematic Biology, 51(3), 492–508. https://doi.org/10.1080/10635150290069913

Sloan, D. B., Havird, J. C., & Sharbrough, J. (2017). The on‐again, off‐again relationship between mitochondrial genomes and species boundaries. Molecular Ecology, 26(8), 2212–2236. https://doi.org/10.1111/mec.13959

Sokolov, E. P. (2000). An improved method for DNA isolation from mucopolysaccharide‐rich molluscan tissues. Journal of Molluscan Studies, 66(4), 573–575. https://doi.org/10.1093/mollus/66.4.573

Song, L., & Florea, L. (2015). Rcorrector: Efficient and accurate error correction for Illumina RNA‐seq reads. GigaScience, 4(1), 48. https://doi.org/10.1186/s13742‐015‐0089‐y

Tajima, F. (1993). Simple methods for testing the molecular evolutionary clock hypothesis. Genetics, 135(2), 599–607. https://doi.org/10.1093/genetics/135.2.599

Tamura, K., Stecher, G., & Kumar, S. (2021). MEGA11: Molecular evolutionary genetics analysis version 11. Molecular Biology and Evolution, 38(7), 3022–3027. https://doi.org/10.1093/molbev/msab120

Taylor, S. A., & Larson, E. L. (2019). Insights from genomes into the evolutionary importance and prevalence of hybridization in nature. Nature Ecology & Evolution, 3(2), 170–177. https://doi.org/10.1038/s41559‐018‐0777‐y

Telschow, A., Gadau, J., Werren, J. H., & Kobayashi, Y. (2019). Genetic incompatibilities between mitochondria and nuclear genes: Effect on gene flow and speciation. Frontiers in Genetics, 10, 62. https://doi.org/10.3389/fgene.2019.00062

Tobias, J. A., Ottenburghs, J., & Pigot, A. L. (2020). Avian diversity: Speciation, macroevolution, and ecological function. Annual Review of Ecology, Evolution, and Systematics, 51(1), 533–560. https://doi.org/10.1146/annurev‐ecolsys‐110218‐025023

Tobler, M., Barts, N., & Greenway, R. (2019). Mitochondria and the origin of species: Bridging genetic and ecological perspectives on speciation processes. Integrative and Comparative Biology, 59(4), 900–911. https://doi.org/10.1093/icb/icz025

Todesco, M., Pascual, M. A., Owens, G. L., Ostevik, K. L., Moyers, B. T., Hübner, S., Heredia, S. M., Hahn, M. A., Caseys, C., Bock, D. G., & Rieseberg, L. H. (2016). Hybridization and extinction. Evolutionary Applications, 9(7), 892–908. https://doi.org/10.1111/eva.12367

Trier, C. N., Hermansen, J. S., Sætre, G.‐P., & Bailey, R. I. (2014). Evidence for mito‐nuclear and sex‐linked reproductive barriers between the hybrid Italian sparrow and its parent species. PLoS Genetics, 10(1), e1004075. https://doi.org/10.1371/journal.pgen.1004075

Turelli, M., & Moyle, L. C. (2007). Asymmetric postmating isolation: Darwin's corollary to Haldane's rule. Genetics, 176, 1059–1088. https://doi.org/10.1534/genetics.106.065979

Wertheim, J. O., Murrell, B., Smith, M. D., Kosakovsky Pond, S. L., & Scheffler, K. (2015). RELAX: Detecting relaxed selection in a phylogenetic framework. Molecular Biology and Evolution, 32(3), 820–832. https://doi.org/10.1093/molbev/msu400

Whitton, J., Sears, C. J., & Maddison, W. P. (2017). Co‐occurrence of related asexual, but not sexual, lineages suggests that reproductive interference limits coexistence. Proceedings of the Royal Society B: Biological Sciences, 284(1868), 20171579. https://doi.org/10.1098/rspb.2017.1579

Wu, C.‐I. (2001). The genic view of the process of speciation. Journal of Evolutionary Biology, 14, 851–865. https://doi.org/10.1046/j.1420‐9101.2001.00335.x

Zobrazit více v PubMed

RefSeq
OR684514, OR637328-OR637330, PRJNA1019476

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...