Cellular Effects of Cationic Copper(II) Schiff Base Complexes: Anti-Inflammatory and Antiproliferative Properties
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
21-38204L
Czech Science Foundation GAČR
PubMed
39031727
DOI
10.1002/cmdc.202400214
Knihovny.cz E-zdroje
- Klíčová slova
- Cellular effects, Copper complex, Cytotoxicity, Inflammation, Schiff base,
- MeSH
- antiflogistika nesteroidní farmakologie chemie chemická syntéza MeSH
- antiflogistika farmakologie chemie chemická syntéza MeSH
- antioxidancia farmakologie chemie chemická syntéza MeSH
- apoptóza účinky léků MeSH
- kationty chemie farmakologie MeSH
- komplexní sloučeniny * farmakologie chemie chemická syntéza MeSH
- lidé MeSH
- měď * chemie farmakologie MeSH
- molekulární struktura MeSH
- nádorové buněčné linie MeSH
- proliferace buněk * účinky léků MeSH
- protinádorové látky * farmakologie chemie chemická syntéza MeSH
- Schiffovy báze * chemie farmakologie chemická syntéza MeSH
- screeningové testy protinádorových léčiv * MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antiflogistika nesteroidní MeSH
- antiflogistika MeSH
- antioxidancia MeSH
- kationty MeSH
- komplexní sloučeniny * MeSH
- měď * MeSH
- protinádorové látky * MeSH
- Schiffovy báze * MeSH
A series of potassium isothiocyanato-(N-salicylidene-aminoacidato) cuprates (1-5) with the general formula of the monomeric unit K[Cu(sal-aa)(NCS)] ⋅ xH2O (x=0 or 2), containing a Schiff-base ligand (H2sal-aa) derived from natural amino acids such as glycine, DL-α-alanine, DL-valine, DL-phenylalanine and β-alanine, and salicylaldehyde, was screened for in vitro antiradical and major cellular effects against selected cancerous and normal cells. The complexes exhibited strong antioxidant properties against superoxide in vitro and a protective effect on DNA under Fenton-like reaction conditions. Screening of their cellular effects revealed moderate in vitro cytotoxicity against human cancer cell lines (A2780, A2780R and MCF-7), with IC50 values of 25-35 μM, and relatively low toxicity to normal fibroblast MRC-5 cells (with IC50 values>50 μM). Additional experiments performed on A2780 cells revealed that the most potent complex 5 significantly increased the number of A2780 cells arrested in the G2/M phase of the cell cycle and triggered intracellular oxidative stress. The selected flow cytometry experiments (detection of apoptosis/autophagy and activation of caspases 3/7 and depletion of mitochondrial membrane potential) did not reveal the dominant mechanism underlying the cytotoxicity of the complexes but clearly differentiated their molecular effects from those of the reference drug cisplatin. All the complexes exerted anti-inflammatory effects by modulating the levels of the proinflammatory cytokines TNF-α and IL-1β in LPS-activated THP-1 macrophage-like cells. Complex 5 also slightly influenced the activity of the upstream NF-κB transcription factor, while no effect on PPARγ activation was detected.
Zobrazit více v PubMed
A. Bhargava, U. N. Vaishampayan, Expert Opin. Invest. Drugs 2009, 18, 1787–1797.
J. T. Hartmann, H.-P. Lipp, Expert Opin. Pharmacother. 2003, 4, 889–901.
C. Santini, M. Pellei, V. Gandin, M. Porchia, F. Tisato, C. Marzano, Chem. Rev. 2014, 114, 815–862.
C. Marzano, M. Pellei, F. Tisato, C. Santini, Anti-Cancer Agents Med. Chem. 2009, 9, 185–211.
D. Almeida da Silva, A. De Luca, R. Squitti, M. Rongioletti, L. Rossi, C. M. L. Machado, G. Cerchiaro, J. Inorg. Biochem. 2022, 226, 111634.
S. S. Braga, A. M. S. Silva, Organometallics 2013, 32, 5626–5639.
I. Ott, Coord. Chem. Rev. 2009, 253, 1670–1681.
S. Medici, M. Peana, V. M. Nurchi, J. I. Lachowicz, G. Crisponi, M. A. Zoroddu, Coord. Chem. Rev. 2015, 284, 329–350.
J. Qi, X. Wang, T. Liu, M. Kandawa-Schulz, Y. Wang, X. Zheng, J. Coord. Chem. 2020, 73, 1208–1221.
M. Carcelli, M. Tegoni, J. Bartoli, C. Marzano, G. Pelosi, M. Salvalaio, D. Rogolino, V. Gandin, Eur. J. Med. Chem. 2020, 194, 112266.
N. K. Singh, A. A. Kumbhar, Y. R. Pokharel, P. N. Yadav, J. Inorg. Biochem. 2020, 210, 111134.
J. F. Machado, F. Marques, T. Pinheiro, M. J. Villa de Brito, G. Scalese, L. Pérez-Díaz, L. Otero, J. P. M. António, D. Gambino, T. S. Morais, ChemMedChem 2023, 18, e202300074.
J. Vančo, O. Švajlenová, E. Račanská, J. Muselík, J. Valentová, J. Trace Elem. Med. Biol. 2004, 18, 155–161.
J. Vančo, Z. Trávníček, J. Marek, R. Herchel, Inorg. Chim. Acta 2010, 363, 3887–3896.
K. Kráľová, K. Kissová, O. Švajlenová, J. Vančo, Chem. Pap. 2004, 58, 357–361.
J. Vančo, J. Marek, Z. Trávníček, E. Račanská, J. Muselík, O. Švajlenová, J. Inorg. Biochem. 2008, 102, 595–605.
S. Reuter, S. C. Gupta, M. M. Chaturvedi, B. B. Aggarwal, Free Radic. Biol. Med. 2010, 49, 1603–1616.
K. Nemat, S. Yadollah, M. Mahdi, Rec. Pat. Inflamm. Allergy Drug Discover. 2009, 3, 73–80.
J. Krätsmár-Šmogrovič, V. Serresová, Ľ. Gažová, Š. Varkonda, V. Konečný, CS 265796 1989.
J. Krätsmár-Šmogrovič, O. Švajlenová, Š. Varkonda, V. Konečný, CS 270143 1989.
J. Marek, J. Vančo, O. Švajlenová, Acta Crystallogr C 2003, 59, m509–m511.
K. Huma, H. Muhammad, H. A. Muhammad, M. Tariq, A. Khurshid, M. M. Muhammad, Mini-Rev. Med. Chem. 2013, 13, 1944–1956.
A. E. Martin, S. J. Lippard, J. Am. Chem. Soc. 1984, 106, 2579–2583.
I. Huk, V. Brovkovych, J. Nanobash Vili, G. Weigel, Ch. Neumayer, L. Partyka, S. Patton, T. Malinski, Br. J. Surg. 1998, 85, 1080–1085.
Q. Lu, Ch. Y. Shen, Q. H. Luo, Polyhedron 1993, 12, 2005–2008.
L. Andrezálová, J. Labuda, Z. Ďuračková, A. Valent, F. Devínsky, Chem. Papers 1995, 49, 24–27.
J. Vančo, Z. Trávníček, J. Hošek, T. Malina, Z. Dvořák, Int. J. Mol. Sci. 2021, 22, 7626.
U. Takahama, T. Oniki, Biochim. Biophys. Acta 2004, 1675, 130–138.
X. Qiao, Z. Y. Ma, C. Z. Xie, F. Xue, Y. W. Zhang, J. Y. Xu, Z. Y. Qiang, J. S. Lou, G. J. Chen, S. P. Yan, J. Inorg. Biochem. 2011, 105, 728–37.
C. Lu, A. Eskandari, P. B. Cressey, K. Suntharalingam, Chemistry 2017, 23, 11366–11374.
A. Li, Y. H. Liu, L. Z. Yuan, Z. Y. Ma, C. L. Zhao, C. Z. Xie, W. G. Bao, J. Y. Xu, J. Inorg. Biochem. 2015, 146, 52–60.
L. Andrezálová, J. Plšíková, J. Janočková, K. Koňariková, I. Žitňanová, M. Kohútová, M. Kožurková, J. Organomet. Chem. 2017, 827, 67–77.
M. Landry, D. Nelson, E. Choi, A. DuRoss, C. Sun, Trans. Oncol. 2022, 16, 101336.
W. Chaabane, S. D. User, M. El-Gazzah, R. Jaksik, E. Sajjadi, J. Rzeszowska-Wolny, M. J. Łos, Arch. Immunol. Ther. Exp. 2013, 61, 43–58.
J. Dong, Y. Li, P. Zhao, T. Xu, B. Zhang, L. Gao, L. Li, J. Mol. Struct. 2022, 1256, 132578.
C. Acilan, B. Cevatemre, Z. Adiguzel, D. Karakas, E. Ulukaya, N. Ribeiro, I. Correia, J. C. Pessoa, Biochim. Biophys. Acta 2017, 1861, 218–234.
R. D. Bao, X. Q. Song, Y. J. Kong, F. F. Li, W. H. Liao, J. Zhou, J. H. Zhang, Q. H. Zhao, J. Y. Xu, C. S. Chen, M. J. Xie, J. Inorg. Biochem. 2020, 208, 111103.
P. G. Shi, W. J. Liu Tala, H. X. Wang, F. B. Li, H. L. Zhang, Y. Y. Wu, Y. J. Kong, Z. M. Zhou, C. Y. Wang, W. L. Chen, R. Liu, C. S. Chen, Cell Discov. 2017, 3, 17010.
Y. Xia, X. Liu, L. Zhang, Cancer Cell Int. 2019, 19, 81.
X. Y. Choo, L. E. McInnes, A. Grubman, J. M. Wasielewska, I. Belaya, E. Burrows, H. Quek, J. C. Martín, S. Loppi, A. Sorvari, Int. J. Mol. Sci. 2022, 23, 10722.
J. Park, H. Lee, S. Kim, S. Yang, Oncotarget 2016, 7, 58405–58417.
R. Scirpo, R. Fiorotto, A. Villani, M. Amenduni, C. Spirli, M. Strazzabosco, Hepatology 2015, 62, 1551–1562.
T. Neri, C. Armani, A. Pegoli, C. Cordazzo, Y. Carmazzi, S. Brunelleschi, C. Bardelli, M. C. Breschi, P. Paggiaro, A. Celi, Eur. Resp. J. 2011, 37, 1494–1502.