NMNAT2 is a druggable target to drive neuronal NAD production

. 2024 Jul 24 ; 15 (1) : 6256. [epub] 20240724

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39048544

Grantová podpora
Wellcome Trust - United Kingdom
2018-02124 Vetenskapsrådet (Swedish Research Council)
2022-00799 Vetenskapsrådet (Swedish Research Council)

Odkazy

PubMed 39048544
PubMed Central PMC11269627
DOI 10.1038/s41467-024-50354-5
PII: 10.1038/s41467-024-50354-5
Knihovny.cz E-zdroje

Maintenance of NAD pools is critical for neuronal survival. The capacity to maintain NAD pools declines in neurodegenerative disease. We identify that low NMNAT2, the critical neuronal NAD producing enzyme, drives retinal susceptibility to neurodegenerative insults. As proof of concept, gene therapy over-expressing full length human NMNAT2 is neuroprotective. To pharmacologically target NMNAT2, we identify that epigallocatechin gallate (EGCG) can drive NAD production in neurons through an NMNAT2 and NMN dependent mechanism. We confirm this by pharmacological and genetic inhibition of the NAD-salvage pathway. EGCG is neuroprotective in rodent (mixed sex) and human models of retinal neurodegeneration. As EGCG has poor drug-like qualities, we use it as a tool compound to generate novel small molecules which drive neuronal NAD production and provide neuroprotection. This class of NMNAT2 targeted small molecules could have an important therapeutic impact for neurodegenerative disease following further drug development.

Erratum v

PubMed

Zobrazit více v PubMed

Verdin, E. NAD+ in aging, metabolism, and neurodegeneration. Science350, 1208–1213 (2015). PubMed

Tham, Y. C. et al. Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. Ophthalmology121, 2081–2090 (2014). PubMed

Williams, P. A. et al. Vitamin B-3 modulates mitochondrial vulnerability and prevents glaucoma in aged mice. Science355, 756–760 (2017). PubMed PMC

Harder, J. M. et al. Disturbed glucose and pyruvate metabolism in glaucoma with neuroprotection by pyruvate or rapamycin. Proc. Natl Acad. Sci. USA117, 33619–33627 (2020). PubMed PMC

Tribble, J. R. et al. Midget retinal ganglion cell dendritic and mitochondrial degeneration is an early feature of human glaucoma. Brain Commun.1, fcz035 (2019). PubMed PMC

Tribble, J. R. et al. NAD salvage pathway machinery expression in normal and glaucomatous retina and optic nerve. Acta Neuropathol. Commun.11, 18 (2023). PubMed PMC

Lautrup, S., Sinclair, D. A., Mattson, M. P. & Fang, E. F. NAD+ in brain aging and neurodegenerative disorders. Cell Metab.30, 630–655 (2019). PubMed PMC

Williams, P. A., Harder, J. M., Cardozo, B. H., Foxworth, N. E. & John, S. W. M. Nicotinamide treatment robustly protects from inherited mouse glaucoma. Commun. Integr. Biol.11, e1356956 (2018). PubMed PMC

Fang, F. et al. NMNAT2 is downregulated in glaucomatous RGCs, and RGC-specific gene therapy rescues neurodegeneration and visual function. Mol. Ther.30, 1421–1431 (2022). PubMed PMC

Ali, Y. O. et al. NMNAT2:HSP90 complex mediates proteostasis in proteinopathies. PLoS Biol.14, e1002472 (2016). PubMed PMC

Williams, R. W., Strom, R. C. & Goldowitz, D. Natural variation in neuron number in mice is linked to a major quantitative trait locus on Chr 11. J. Neurosci.18, 138–146 (1998). PubMed PMC

Howell, G. R. et al. Molecular clustering identifies complement and endothelin induction as early events in a mouse model of glaucoma. J. Clin. Investig.121, 1429–1444 (2011). PubMed PMC

Howell, G. R., Walton, D. O., King, B. L., Libby, R. T. & John, S. W. Datgan, a reusable software system for facile interrogation and visualization of complex transcription profiling data. BMC Genomics12, 429 (2011). PubMed PMC

Gilley, J., Adalbert, R., Yu, G. & Coleman, M. P. Rescue of peripheral and CNS axon defects in mice lacking NMNAT2. J. Neurosci.33, 13410–13424 (2013). PubMed PMC

Gilley, J., Mayer, P. R., Yu, G. & Coleman, M. P. Low levels of NMNAT2 compromise axon development and survival. Hum. Mol. Genet28, 448–458 (2019). PubMed

Carpenter, P., Sefton, A. J., Dreher, B. & Lim, W. L. Role of target tissue in regulating the development of retinal ganglion cells in the albino rat: effects of kainate lesions in the superior colliculus. J. Comp. Neurol.251, 240–259 (1986). PubMed

Pearson, H. E. & Stoffler, D. J. Retinal ganglion cell degeneration following loss of postsynaptic target neurons in the dorsal lateral geniculate nucleus of the adult cat. Exp. Neurol.116, 163–171 (1992). PubMed

Ljungberg, M. C. et al. CREB-activity and nmnat2 transcription are down-regulated prior to neurodegeneration, while NMNAT2 over-expression is neuroprotective, in a mouse model of human tauopathy. Hum. Mol. Genet21, 251–267 (2012). PubMed PMC

Berger, F., Lau, C., Dahlmann, M. & Ziegler, M. Subcellular compartmentation and differential catalytic properties of the three human nicotinamide mononucleotide adenylyltransferase isoforms. J. Biol. Chem.280, 36334–36341 (2005). PubMed

Tribble, J. R. et al. Nicotinamide provides neuroprotection in glaucoma by protecting against mitochondrial and metabolic dysfunction. Redox Biol.43, 101988 (2021). PubMed PMC

Loreto, A. et al. Mitochondrial impairment activates the Wallerian pathway through depletion of NMNAT2 leading to SARM1-dependent axon degeneration. Neurobiol. Dis.134, 104678 (2020). PubMed PMC

Kim, S. et al. Plasma and tissue levels of tea catechins in rats and mice during chronic consumption of green tea polyphenols. Nutr. Cancer37, 41–48 (2000). PubMed

Milde, S., Gilley, J. & Coleman, M. P. Axonal trafficking of NMNAT2 and its roles in axon growth and survival in vivo. Bioarchitecture3, 133–140 (2013). PubMed PMC

Milde, S., Fox, A. N., Freeman, M. R. & Coleman, M. P. Deletions within its subcellular targeting domain enhance the axon protective capacity of Nmnat2 in vivo. Sci. Rep.3, 2567 (2013). PubMed PMC

Summers, D. W., Milbrandt, J. & DiAntonio, A. Palmitoylation enables MAPK-dependent proteostasis of axon survival factors. Proc. Natl Acad. Sci. USA115, E8746–E8754 (2018). PubMed PMC

Milde, S., Gilley, J. & Coleman, M. P. Subcellular localization determines the stability and axon protective capacity of axon survival factor Nmnat2. PLoS Biol.11, e1001539 (2013). PubMed PMC

Williams, P. A. et al. Nicotinamide and WLDS act together to prevent neurodegeneration in glaucoma. Front. Neurosci.11, 232 (2017). PubMed PMC

Howell, G. R. et al. Axons of retinal ganglion cells are insulted in the optic nerve early in DBA/2J glaucoma. J. Cell Biol.179, 1523–1537 (2007). PubMed PMC

Risner, M. L. et al. Neuroprotection by WldS depends on retinal ganglion cell type and age in glaucoma. Mol. Neurodegener.16, 36 (2021). PubMed PMC

Cimaglia, G., Votruba, M., Morgan, J. E., André, H. & Williams, P. A. Potential therapeutic benefit of NAD+ supplementation for Glaucoma and Age-Related Macular Degeneration. Nutrients12, 2871 (2020). PubMed PMC

Hui, F. et al. Improvement in inner retinal function in glaucoma with nicotinamide (vitamin B3) supplementation: a crossover randomized clinical trial. Clin. Exp. Ophthalmol.48, 903–914 (2020). PubMed

De Moraes, C. G. et al. Nicotinamide and pyruvate for neuroenhancement in open-angle glaucoma: A phase 2 randomized clinical trial. JAMA Ophthalmol.140, 11–18 (2022). PubMed PMC

Trammell, S. A. et al. Nicotinamide riboside is uniquely and orally bioavailable in mice and humans. Nat. Commun.7, 12948 (2016). PubMed PMC

Arizono, I. et al. Axonal protection by oral nicotinamide riboside treatment with upregulated AMPK phosphorylation in a rat glaucomatous degeneration model. Curr. Issues Mol. Biol.45, 7097–7109 (2023). PubMed PMC

Di Stefano, M. et al. A rise in NAD precursor nicotinamide mononucleotide (NMN) after injury promotes axon degeneration. Cell Death Differ.22, 731–742 (2015). PubMed PMC

Gerdts, J., Brace, E. J., Sasaki, Y., DiAntonio, A. & Milbrandt, J. SARM1 activation triggers axon degeneration locally via NAD+ destruction. Science348, 453–457 (2015). PubMed PMC

Essuman, K. et al. The SARM1 toll/interleukin-1 receptor domain possesses intrinsic NAD+ cleavage activity that promotes pathological axonal degeneration. Neuron93, 1334–1343.e1335 (2017). PubMed PMC

Feldman, H. C. et al. Selective inhibitors of SARM1 targeting an allosteric cysteine in the autoregulatory ARM domain. Proc. Natl Acad. Sci. USA119, e2208457119 (2022). PubMed PMC

Fernandes, K. A. et al. Role of SARM1 and DR6 in retinal ganglion cell axonal and somal degeneration following axonal injury. Exp. Eye Res171, 54–61 (2018). PubMed PMC

Walker, L. J. et al. MAPK signaling promotes axonal degeneration by speeding the turnover of the axonal maintenance factor NMNAT2. Elife6, e22540 (2017). PubMed PMC

Szretter, K. J. et al. The immune adaptor molecule SARM modulates tumor necrosis factor alpha production and microglia activation in the brainstem and restricts West Nile Virus pathogenesis. J. Virol.83, 9329–9338 (2009). PubMed PMC

Crawford, C. L. et al. SARM1 depletion slows axon degeneration in a CNS model of neurotropic viral infection. Front Mol. Neurosci.15, 860410 (2022). PubMed PMC

Singh, B. N., Shankar, S. & Srivastava, R. K. Green tea catechin, epigallocatechin-3-gallate (EGCG): mechanisms, perspectives and clinical applications. Biochem Pharm.82, 1807–1821 (2011). PubMed PMC

Sun, C. et al. NAD depletion mediates cytotoxicity in human neurons with autophagy deficiency. Cell Rep.42, 112372 (2023). PubMed PMC

Tribble, J. R. et al. Neuroprotection in glaucoma: mechanisms beyond intraocular pressure lowering. Mol. Asp. Med92, 101193 (2023). PubMed

Sloan, Z. et al. GeneNetwork: framework for web-based genetics. J. Open Source Softw.110.21105/joss.00025 (2016).

Gautam, P. et al. Multi-species single-cell transcriptomic analysis of ocular compartment regulons. Nat. Commun.12, 5675 (2021). PubMed PMC

Orozco, L. D. et al. Integration of eQTL and a single-cell atlas in the human eye identifies causal genes for age-related macular degeneration. Cell Rep.30, 1246–1259.e1246 (2020). PubMed

Osborne, A., Hopes, M., Wright, P., Broadway, D. C. & Sanderson, J. Human organotypic retinal cultures (HORCs) as a chronic experimental model for investigation of retinal ganglion cell degeneration. Exp. Eye Res.143, 28–38 (2016). PubMed

Tribble, J. R. et al. Retinal ganglion cell degeneration in a rat magnetic bead model of ocular hypertensive glaucoma. Transl. Vis. Sci. Technol.10, 21 (2021). PubMed PMC

Canovai, A. et al. Pyrroloquinoline quinone drives ATP synthesis in vitro and in vivo and provides retinal ganglion cell neuroprotection. Acta Neuropathol. Commun.11, 146 (2023). PubMed PMC

Yang, J. et al. The I-TASSER Suite: protein structure and function prediction. Nat. Methods12, 7–8 (2015). PubMed PMC

Brunetti, L., Di Stefano, M., Ruggieri, S., Cimadamore, F. & Magni, G. Homology modeling and deletion mutants of human nicotinamide mononucleotide adenylyltransferase isozyme 2: new insights on structure and function relationship. Protein Sci.19, 2440–2450 (2010). PubMed PMC

Karami, Y. et al. DaReUS-loop: a web server to model multiple loops in homology models. Nucleic Acids Res47, W423–W428 (2019). PubMed PMC

Wiederstein, M. & Sippl, M. J. ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res35, W407–W410 (2007). PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...