Spectroscopic analysis of nanosized Zn(Ag, Ni)O systems and observation of superparamagnetism at low temperature
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39050963
PubMed Central
PMC11265569
DOI
10.1039/d4na00077c
PII: d4na00077c
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
To understand the impact of binary doping in ZnO, nanosized Zn(Ag, Ni)O systems were synthesized by the sol-gel method. The amount of Ag was fixed at 2 at%, and that of Ni was varied from 1 to 15 at%. Ni incorporation equal to or beyond 3 at% gave rise to the development of the NiO phase. The presence of Ag and Ni did not have much influence on the lattice constants of ZnO. However, a larger addition of Ni impacted the unit cell of NiO, as indicated by the reduction of the lattice constant of NiO. The increase in NiO and Ag contents in ZnO reduced the second and third harmonic intensities under non-linear investigations. X-ray photoelectron spectroscopy analysis indicated that initial Ni addition varied randomly along with Ag, and it stabilized itself at higher concentration. Field emission scanning electron microscopy revealed that interlinked particles and chains with tamarind shapes were formed, closely matching the rod-like structures under high resolution. Ag and Ni addition altered the structures slightly and randomly till 5 at% Ni; thereafter they deviated from the particle shape to flat disc-shapes. Interestingly, the magnetic response of the sample was determined by the NiO phase, and the effect of Ni and Ag substitution in the ZnO host matrix was almost irrelevant at low temperatures toward magnetic contribution. Weak ferromagnetism at low temperatures (≤50 K) with superparamagnetic-like behavior (cusp in ZFC magnetization) was observed in all the samples. This could be attributed to the finite nano-size effect and uncompensated spins at the surface of the particle.
College of Science and Engineering Flinders University Adelaide SA 5001 Australia
Department of Chemistry Malda College Malda West Bengal 732101 India
Department of Physics National Dong Hwa University Hualien 97401 Taiwan
Department of Physics University of Gour Banga Malda West Bengal 732103 India
Future Industries Institute University of South Australia Mawson Lakes Campus SA 5095 Australia
Zobrazit více v PubMed
Naseer S. Aamir M. Mirza M. A. Jabeen U. Tahir R. Malghan M. N. K. Wali Q. Synthesis of Ni-Ag-ZnO solid solution nanoparticles for photoreduction and antimicrobial applications. RSC Adv. 2022;12:7661–7670. doi: 10.1039/D2RA00717G. PubMed DOI PMC
Lemine O. M. Modwi A. Houas A. Dai J. H. Song Y. Alshammari M. Alanzi A. Alhathlool R. Bououdina M. Room temperature ferromagnetism in Ni, Fe and Ag co-doped Cu–ZnO nanoparticles: an experimental and first principles DFT study. J. Mater. Sci.: Mater. Electron. 2018;29:14387–14395. doi: 10.1007/s10854-018-9571-5. DOI
Jeyachitra R. Kalpana S. Senthil T. S. Kang M. Electrical behavior and enhanced photocatalytic activity of (Ag, Ni) co-doped ZnO nanoparticles synthesized from co-precipitation technique. Water Sci. Technol. 2020;81(6):1296–1307. doi: 10.2166/wst.2020.230. doi: 10.2166/wst.2020.230. PubMed DOI
P Misra K. K Shukla R. Srivastava A. Srivastava A. Blueshift in optical band gap in nanocrystalline films deposited by sol-gel method. Appl. Phys. Lett. 2009;95(3):031901. doi: 10.1063/1.3184789. doi: 10.1063/1.3184789. DOI
Chattopadhyay S. Misra K. P. Agarwala A. Shahee A. Jain S. Halder N. Rao A. Babu P. D. Saran M. Mukhopadhyay A. K. Ceram. Int. 2019;45(17):23341–23354. doi: 10.1016/j.ceramint.2019.08.034. DOI
Goktas A. Modanlı S. Tumbul A. Kilic A. Facile synthesis and characterization of ZnO, ZnO:Co, and ZnO/ZnO:Co nano rod-like homojunction thin films: Role of crystallite/grain size and microstrain in photocatalytic performance. J. Alloys Compd. 2022;893:162334. doi: 10.1016/j.jallcom.2021.162334. DOI
Khayatian A. Almasi Kashi M. Azimirad R. Safa S. Akhtarianfar Akhtarian S. F. Effect of annealing process in tuning of defects in ZnO nanorods and their application in UV photodetectors. Optik. 2016;127(11):4675–4681. doi: 10.1016/j.ijleo.2016.01.177. DOI
Goktas A. Aslan F. Tumbul A. Nanostructured Cu-doped ZnS polycrystalline thin films produced by a wet chemical route: the influences of Cu doping and film thickness on the structural, optical and electrical properties. J. Sol-Gel Sci. Technol. 2015;75:45–53. doi: 10.1007/s10971-015-3674-8. DOI
Goktas A. Aslan F. Yeşilata B. Boz İ. Physical properties of solution processable n-type Fe and Al co-doped ZnO nanostructured thin films: Role of Al doping levels and annealing. Mater. Sci. Semicond. Process. 2018;75:221–233. doi: 10.1016/j.mssp.2017.11.033. DOI
Kumawat A. Chattopadhyay S. Misra K. P. Halder N. Jain S. K. Choudhary B. L. Blue-shift in the optical band gap of sol-gel derived Zn(1-x)SrxO nanoparticles. Solid State Sci. 2020;108:106379. doi: 10.1016/j.solidstatesciences.2020.106379. DOI
Kumar N. Misra K. P. Jain S. K. Choudhary B. L. Structural and morphological properties of Ce doped ZnO. AIP Conf. Proc. 2013;1536(1):605–606. doi: 10.1063/1.4810372. DOI
Kumawat A. Misra K. P. Chattopadhyay S. Band Gap Engineering and Relationship with Luminescence in Rare-Earth Elements Doped ZnO: An Overview. Mater. Technol. 2022;37(11):1595–1610. doi: 10.1080/10667857.2022.2082351. DOI
Misra K. P. Jain S. Agarwala A. Chattopadhyay S. Halder N. Effective mass model supported band gap variation in cobalt-doped ZnO nanoparticles obtained by co-precipitation. Semiconductors. 2020;54:311–316. doi: 10.1134/S1063782620030136. doi: 10.1134/S1063782620030136. DOI
Zhang Q. Liu J.-K. Wang J.-D. Luo H.-X. Lu Y. Yang X.-H. Atmospheric Self-induction Synthesis and Enhanced Visible Light Photocatalytic Performance of Fe3+ Doped Ag-ZnO Mesocrystals. Ind. Eng. Chem. Res. 2014;53(34):13236–13246. doi: 10.1021/ie502011h. DOI
Ahmad I. Mazhar M. E. Usmani M. N. Mehmood M. Abbas W. Akhtar N. Ahmed E. Auto-combustion synthesis of pure and Er, Dy co-doped ZnO nanomaterials for efficient methyl orange degradation using solar and visible light photocatalysis. Mater. Res. Express. 2019;6:075044. doi: 10.1088/2053-1591/ab1562. DOI
Subash B. Krishnakumar B. Swaminathan M. Shanthi M. Highly Efficient, Solar Active, and Reusable Photocatalyst: Zr-Loaded Ag–ZnO for Reactive Red 120 Dye Degradation with Synergistic Effect and Dye-Sensitized Mechanism. Langmuir. 2013;29(3):939–949. doi: 10.1021/la303842c. PubMed DOI
Al-Harbi F. F. El Ghoul J. M. Sol–Gel Synthesis of Dy Co-Doped ZnO:V Nanoparticles for Optoelectronic Applications. Condens. Matter. 2021;6(3):35. doi: 10.3390/condmat6030035. DOI
Serier H. Toulemonde O. Bernard D. Demourgues A. Majimel J. Gaudon M. Dilute magnetic semi-conductor properties of Ga/Al/Co-codoped ZnO oxides. Mater. Res. Bull. 2012;47(3):755–762. doi: 10.1016/j.materresbull.2011.12.006. DOI
Sharma A. Khangarot R. K. Chattopadhyay S. Misra K. P. Misra R. D. K. Babu P. D. Band Gap Reduction and Improved Ferromagnetic Ordering via Bound Magnetic Polarons in Zn(Al, Ce)O Nanoparticles. Mater. Technol. 2023;38(1):2151114. doi: 10.1080/10667857.2022.2151114. DOI
Yin Y. Sibley A. Quinton J. S. Lewis D. A. Andersson G. G. Dipole Formation at the MoO3/Conjugated Polymer Interface. Adv. Funct. Mater. 2018;28(46):1802825. doi: 10.1002/adfm.201802825. DOI
Chattopadhyay S. Kumawat A. Misra K. P. Halder N. Bandyopadhyay A. Antony A. Rao A. Poornesh P. Jedryka J. Ozga K. Kucharska B. Misra R. D. K. Micro-strain administered SHG intensity enhancement by heavy Ce doping in co-precipitated ZnO nanoparticles. Mater. Sci. Eng. B. 2021;266:115041. doi: 10.1016/j.mseb.2021.115041. DOI
Cui J. Jiang J. Shi L. Zhao F. Wang D. Lin Y. Xie T. The role of Ni doping on photoelectric gas-sensing properties of ZnO nanofibers to HCHO at room-temperature. RSC Adv. 2016;6(82):78257–78263. doi: 10.1039/C6RA11887A. DOI
Liu W. J. Tang X. D. Tang Z. Bai W. Tang N. Y. Oxygen Defects Mediated Magnetism of Ni Doped ZnO. Adv. Condens. Matter Phys. 2013:424398. doi: 10.1155/2013/424398. DOI
Wang W. Hui S. Zhang F. Wang X. Zhang S. Yan J. Zhang W. Fabrication and Study on Magnetic-Optical Properties of Ni-Doped ZnO Nanorod Arrays. Micromachines. 2019;10(9):622. doi: 10.3390/mi10090622. doi: 10.3390/mi10090622. PubMed DOI PMC
Larciprete M. C. Centini M. Second harmonic generation from ZnO films and nanostructures. Appl. Phys. Rev. 2015;2:031302.
Moura K. Lima R. Coelho A. Souza-Junior E. Duque J. Meneses C. Tuning the surface anisotropy in Fe-doped NiO nanoparticles. Nanoscale. 2014;6:352–357. doi: 10.1039/C3NR04926D. PubMed DOI
Sarkar B. J. Bandyopadhyay A. Studies of magnetic behavior of chemically synthesized interacting superparamagnetic copper ferrite nanoparticles. J. Mater. Sci.: Mater. Electron. 2021;32:1491–1505. doi: 10.1007/s10854-020-04919-x. doi: 10.1007/s10854-020-04919-x. DOI
Sarkar B. J. Bandyopadhyay A. Quantitative analysis of the magnetic properties of a mixture of single- and multi-domain Zn-substituted CuFe2O4 nanoparticles with canted spin. J. Mater. Sci.: Mater. Electron. 2022;33:20081–20094. doi: 10.1007/s10854-022-08825-2. DOI
Mandal S. Banerjee S. Menon K. S. R. Core-shell model of the vacancy concentration and magnetic behavior for antiferromagnetic nanoparticle. Phys. Rev. B: Condens. Matter Mater. Phys. 2009;80(21):214420. doi: 10.1103/PhysRevB.80.214420. DOI
Mandal S. Menon K. S. R. Mahatha S. K. Banerjee S. Finite size versus surface effects on magnetic properties of antiferromagnetic particles. Appl. Phys. Lett. 2011;99:232507. doi: 10.1063/1.3668091. DOI
Balaev D. A. Krasikov A. A. Popkov S. I. Semenov S. V. Volochaev M. N. Velikanov D. A. Kirillov V. L. Martyanov O. N. Uncompensated magnetic moment and surface and size effects in few-nanometer antiferromagnetic NiO particles. J. Magn. Magn. Mater. 2021;539:168343. doi: 10.1016/j.jmmm.2021.168343. DOI
De Biasi E. Ramos C. A. Zysler R. D. Romero H. Large surface magnetic contribution in amorphous ferromagnetic nanoparticles. Phys. Rev. B: Condens. Matter Mater. Phys. 2002;65:144416. doi: 10.1103/PhysRevB.65.144416. DOI
Bandyopadhyay A. Deb A. K. Kobayashi S. Yoshimura K. Chakrabarti P. K. Room temperature ferromagnetism in Fe-doped europium oxide (Eu1.90Fe0.10O3−δ) J. Alloys Compd. 2014;611:324–328. doi: 10.1016/j.jallcom.2014.05.111. DOI
Balaraju B. Kaleemulla S. Rao N. M. Omkaram I. Reddy D. S. Subbaravamma K. Rao G. V. Effect of Fe Substitution on Microstructure and Magnetic Properties of Ni1−xFexO2 Nanoparticles. J. Supercond. Nov. Magnetism. 2018;31:2999–3005. doi: 10.1007/s10948-017-4444-3. doi: 10.1007/s10948-017-4444-3. DOI
Yosida K. Magnetic Properties of Cu-Mn Alloys. Phys. Rev. 1957;106:893. doi: 10.1103/PhysRev.106.893. doi: 10.1103/PhysRev.106.893. DOI
Anderson P. W. Hasegawa H. Considerations on Double Exchange. Phys. Rev. 1955;100:67. doi: 10.1103/PhysRev.100.675. DOI
Bandyopadhyay A. Bhakta N. Sutradhar S. Sarkar B. J. K Deb A. Kobayashi S. Yoshimura K. Chakrabarty P. K. Microstructure investigation, optical properties and magnetic phase transition of Tm3+ substituted nanocrystalline ZnO (Zn0.95Tm0.05O) RSC Adv. 2016;6:101818–101826. doi: 10.1039/C6RA16194D. doi: 10.1039/C6RA16194D. DOI
Goktas S. Tumbul A. Goktas A. Growth Technique–Induced Highly C-Axis-Oriented ZnO: Mn, Zno: Fe and ZnO: Co Thin Films: A Comparison of Nanostructure, Surface Morphology, Optical Band Gap, and Room Temperature Ferromagnetism. J. Supercond. Nov. Magnetism. 2023;36:1875–1892. doi: 10.1007/s10948-023-06630-4. doi: 10.1007/s10948-023-06630-4. DOI
Kocyigit A. Topkaya R. Structural, optical and magnetic properties of Ni-Co co-doped ZnO thin films. Mater. Res. Express. 2019;6:096116. doi: 10.1088/2053-1591/ab120a. doi: 10.1088/2053-1591/ab120a. DOI
Aba Z. Goktas A. Kilic A. Characterization of Zn1-xLaxS thin films; compositional, surface, optical, and photoluminescence properties for possible optoelectronic and photocatalytic applications. J. Sol-Gel Sci. Technol. 2024;109:260–271. doi: 10.1007/s10971-023-06273-w. doi: 10.1007/s10971-023-06273-w. DOI
Aslan E. Sahin G. Goktas A. Facile synthesis of Sb2S3 micro-materials for highly sensitive visible light photodetectors and photocatalytic applications. Mater. Chem. Phys. 2023;307:128160. doi: 10.1016/j.matchemphys.2023.128160. DOI
Aslan E. Emir Ö. Arslan F. Goktas A. Tumbul A. Durgun M. Kilic A. Aktacir M. A. Aslan F. Improving the optical properties of CuCoMnOx spinel absorber using ZnO nanorod arrays for thermal collector and photocatalytic applications. Ceram. Int. 2024;50(6):9169–9176. doi: 10.1016/j.ceramint.2023.12.233. DOI
Aslan F. Arslan F. Tumbul A. Goktas A. Synthesis and characterization of solution processed p-SnS and n-SnS2 thin films: Effect of starting chemicals. Opt. Mater. 2022;127:112270. doi: 10.1016/j.optmat.2022.112270. DOI