Hypoxic-Ischemic Insult Alters Polyamine and Neurotransmitter Abundance in the Specific Neonatal Rat Brain Subregions
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
39058922
PubMed Central
PMC11311127
DOI
10.1021/acschemneuro.4c00190
Knihovny.cz E-zdroje
- Klíčová slova
- MALDI mass spectrometry imaging, cerebrospinal fluid, histology, metabolome dynamics, neonatal hypoxic-ischemic encephalopathy, neurotransmitters, polyamines,
- MeSH
- krysa rodu Rattus MeSH
- metabolomika MeSH
- mozek * metabolismus MeSH
- mozková hypoxie a ischemie * metabolismus patologie MeSH
- neurony metabolismus MeSH
- neurotransmiterové látky * metabolismus MeSH
- novorozená zvířata * MeSH
- polyaminy * metabolismus MeSH
- potkani Sprague-Dawley MeSH
- spektrometrie hmotnostní - ionizace laserem za účasti matrice metody MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- neurotransmiterové látky * MeSH
- polyaminy * MeSH
Neonatal hypoxic-ischemic (HI) brain insult is a major cause of neonatal mortality and morbidity. To assess the underlying pathological mechanisms, we mapped the spatiotemporal changes in polyamine, amino acid, and neurotransmitter levels, following HI insult (by the Rice-Vannucci method) in the brains of seven-day-old rat pups. Matrix-assisted laser desorption/ionization mass spectrometry imaging of chemically modified small-molecule metabolites by 4-(anthracen-9-yl)-2-fluoro-1-methylpyridin-1-ium iodide revealed critical HI-related metabolomic changes of 22 metabolites in 14 rat brain subregions, much earlier than light microscopy detected signs of neuronal damage. For the first time, we demonstrated excessive polyamine oxidation and accumulation of 3-aminopropanal in HI neonatal brains, which was later accompanied by neuronal apoptosis enhanced by increases in glycine and norepinephrine in critically affected brain regions. Specifically, putrescine, cadaverine, and 3-aminopropanal increased significantly as early as 12 h postinsult, mainly in motor and somatosensory cortex, hippocampus, and midbrain, followed by an increase in norepinephrine 24 h postinsult, which was predominant in the caudate putamen, the region most vulnerable to HI. The decrease of γ-aminobutyric acid (GABA) and the continuous dysregulation of the GABAergic system together with low taurine levels up to 36 h sustained progressive neurodegenerative cellular processes. The molecular alterations presented here at the subregional rat brain level provided unprecedented insight into early metabolomic changes in HI-insulted neonatal brains, which may further aid in the identification of novel therapeutic targets for the treatment of neonatal HI encephalopathy.
Zobrazit více v PubMed
Millar L. J.; Shi L.; Hoerder-Suabedissen A.; Molnar Z. Neonatal hypoxia ischaemia: mechanisms, models, and therapeutic challenges. Front. Cell. Neurosci. 2017, 11, 7810.3389/fncel.2017.00078. PubMed DOI PMC
Kurinczuk J. J.; White-Koning M.; Badawi N. Epidemiology of neonatal encephalopathy and hypoxic-ischaemic encephalopathy. Early Hum. Dev. 2010, 86 (6), 329–338. 10.1016/j.earlhumdev.2010.05.010. PubMed DOI
Placha K.; Luptakova D.; Baciak L.; Ujhazy E.; Juranek I. Neonatal brain injury as consequence of insufficient cerebral oxygenation. Neuroendocrinol. Lett. 2016, 37 (2), 79–96. PubMed
Douglas-Escobar M.; Weiss M. D. Hypoxic-ischemic encephalopathy: a review for the clinician. JAMA Pediatr. 2015, 169 (4), 397–403. 10.1001/jamapediatrics.2014.3269. PubMed DOI
Northington F. J.; Chavez-Valdez R.; Martin L. J. Neuronal cell death in neonatal hypoxia-ischemia. Ann. Neurol. 2011, 69 (5), 743–758. 10.1002/ana.22419. PubMed DOI PMC
Payabvash S.; Souza L. C.; Wang Y.; Schaefer P. W.; Furie K. L.; Halpern E. F.; Gonzalez R. G.; Lev M. H. Regional ischemic vulnerability of the brain to hypoperfusion: the need for location specific computed tomography perfusion thresholds in acute stroke patients. Stroke 2011, 42 (5), 1255–1260. 10.1161/STROKEAHA.110.600940. PubMed DOI PMC
Baburamani A. A.; Ek C. J.; Walker D. W.; Castillo-Melendez M. Vulnerability of the developing brain to hypoxic-ischemic damage: contribution of the cerebral vasculature to injury and repair?. Front. Physiol. 2012, 3, 42410.3389/fphys.2012.00424. PubMed DOI PMC
Hyman S. E. Neurotransmitters. Curr. Biol. 2005, 15 (5), R154–R158. 10.1016/j.cub.2005.02.037. PubMed DOI
Marques T. M.; van Rumund A.; Kersten I.; Bruinsma I. B.; Wessels H.; Gloerich J.; Kaffa C.; Esselink R. A. J.; Bloem B. R.; Kuiperij H. B.; Verbeek M. M. Identification of cerebrospinal fluid biomarkers for parkinsonism using a proteomics approach. npj Parkinson’s Dis. 2021, 7 (1), 10710.1038/s41531-021-00249-9. PubMed DOI PMC
Hamdy N.; Eide S.; Sun H. S.; Feng Z. P. Animal models for neonatal brain injury induced by hypoxic ischemic conditions in rodents. Exp. Neurol. 2020, 334, 11345710.1016/j.expneurol.2020.113457. PubMed DOI
Lyu H.; Sun D. M.; Ng C. P.; Chen J. F.; He Y. Z.; Lam S. Y.; Zheng Z. Y.; Askarifirouzjaei H.; Wang C. C.; Young W.; Poon W. S. A new hypoxic ischemic encephalopathy model in neonatal rats. Heliyon 2021, 7 (12), e0864610.1016/j.heliyon.2021.e08646. PubMed DOI PMC
Rice J. E. 3rd; Vannucci R. C.; Brierley J. B. The influence of immaturity on hypoxic-ischemic brain damage in the rat. Ann. Neurol. 1981, 9 (2), 131–141. 10.1002/ana.410090206. PubMed DOI
Harteman J. C.; Nikkels P. G.; Benders M. J.; Kwee A.; Groenendaal F.; de Vries L. S. Placental pathology in full-term infants with hypoxic-ischemic neonatal encephalopathy and association with magnetic resonance imaging pattern of brain injury. J. Pediatr. 2013, 163 (4), 968–975.e2. 10.1016/j.jpeds.2013.06.010. PubMed DOI
Pu Y.; Li Q.; Zeng C.; Gao J.; Qi J.; Luo D.; Mahankali S.; Fox T. P.; Gao J. Increased detectability of alpha brain glutamate/glutamine in neonatal hypoxic-ischemic encephalopathy. Am. J. Neuroradiol. 2000, 21, 203–212. PubMed PMC
van de Looij Y.; Dean J. M.; Gunn A. J.; Hüppi P. S.; Sizonenko S. V. Advanced magnetic resonance spectroscopy and imaging techniques applied to brain development and animal models of perinatal injury. Int. J. Dev. Neurosci. 2015, 45, 29–38. 10.1016/j.ijdevneu.2015.03.009. PubMed DOI
Luptakova D.; Baciak L.; Pluhacek T.; Skriba A.; Sediva B.; Havlicek V.; Juranek I. Membrane depolarization and aberrant lipid distributions in the neonatal rat brain following hypoxic-ischaemic insult. Sci. Rep. 2018, 8 (1), 695210.1038/s41598-018-25088-2. PubMed DOI PMC
Xu S.; Waddell J.; Zhu W.; Shi D.; Marshall A. D.; McKenna M. C.; Gullapalli R. P. In vivo longitudinal proton magnetic resonance spectroscopy on neonatal hypoxic-ischemic rat brain injury: Neuroprotective effects of acetyl-L-carnitine. Magn. Reson. Med. 2015, 74 (6), 1530–1542. 10.1002/mrm.25537. PubMed DOI PMC
Johnson M.; Hanson G. R.; Gibb J. W.; Adair J.; Filloux F. Effect of neonatal hypoxia-ischemia on nigro-striatal dopamine receptors and on striatal neuropeptide Y, dynorphin A and substance P concentration in rats. Dev. Brain Res. 1994, 83, 109–118. 10.1016/0165-3806(94)90184-8. PubMed DOI
Liu Y.; Silverstein F. S.; Skoff R.; Barks J. D. Hypoxic-ischemic oligodendroglial injury in neonatal rat brain. Pediatr. Res. 2002, 51 (1), 25–33. 10.1203/00006450-200201000-00007. PubMed DOI
Shariatgorji M.; Nilsson A.; Fridjonsdottir E.; Vallianatou T.; Kallback P.; Katan L.; Savmarker J.; Mantas I.; Zhang X.; Bezard E.; Svenningsson P.; Odell L. R.; Andren P. E. Comprehensive mapping of neurotransmitter networks by MALDI-MS imaging. Nat. Methods 2019, 16 (10), 1021–1028. 10.1038/s41592-019-0551-3. PubMed DOI
Liu J.; Sheldon R. A.; Segal M. R.; Kelly M. J.; Pelton J. G.; Ferriero D. M.; James T. L.; Litt L. 1H nuclear magnetic resonance brain metabolomics in neonatal mice after hypoxia-ischemia distinguished normothermic recovery from mild hypothermia recoveries. Pediatr. Res. 2013, 74 (2), 170–179. 10.1038/pr.2013.88. PubMed DOI PMC
Tanaka E.; Ogawa Y.; Fujii R.; Shimonaka T.; Sato Y.; Hamazaki T.; Nagamura-Inoue T.; Shintaku H.; Tsuji M. Metabolomic analysis and mass spectrometry imaging after neonatal stroke and cell therapies in mouse brains. Sci. Rep. 2020, 10 (1), 2188110.1038/s41598-020-78930-x. PubMed DOI PMC
Takenouchi T.; Sugiura Y.; Morikawa T.; Nakanishi T.; Nagahata Y.; Sugioka T.; Honda K.; Kubo A.; Hishiki T.; Matsuura T.; Hoshino T.; Takahashi T.; Suematsu M.; Kajimura M. Therapeutic hypothermia achieves neuroprotection via a decrease in acetylcholine with a concurrent increase in carnitine in the neonatal hypoxia-ischemia. J. Cereb. Blood Flow Metab. 2015, 35 (5), 794–805. 10.1038/jcbfm.2014.253. PubMed DOI PMC
Martini S.; Parladori R.; Corvaglia L.. Biomarkers of Oxidative Stress in Neonatal Hypoxic-Ischemic Encephalopathy. In Biomarkers in Trauma, Injury and Critical Care; Rajendram R.; Preedy V. R.; Patel V. B., Eds.; Springer International Publishing: Cham, 2023; pp 199–222.
Zhao M.; Zhu P.; Fujino M.; Zhuang J.; Guo H.; Sheikh I.; Zhao L.; Li X.-K. Oxidative Stress in Hypoxic-Ischemic Encephalopathy: Molecular Mechanisms and Therapeutic Strategies. Int. J. Mol. Sci. 2016, 17 (12), 207810.3390/ijms17122078. PubMed DOI PMC
Casero R. A.; Murray Stewart T.; Pegg A. E. Polyamine metabolism and cancer: treatments, challenges and opportunities. Nat. Rev. Cancer 2018, 18 (11), 681–695. 10.1038/s41568-018-0050-3. PubMed DOI PMC
Babu G. N.; Sailor K. A.; Beck J.; Sun D.; Dempsey R. J. Ornithine Decarboxylase Activity in In Vivo and In Vitro Models of Cerebral Ischemia. Neurochem. Res. 2003, 28 (12), 1851–1857. 10.1023/A:1026123809033. PubMed DOI
Hong E. Y.; Kim J. Y.; Upadhyay R.; Park B. J.; Lee J. M.; Kim B. G. Rational engineering of ornithine decarboxylase with greater selectivity for ornithine over lysine through protein network analysis. J. Biotechnol. 2018, 281, 175–182. 10.1016/j.jbiotec.2018.07.020. PubMed DOI
Kang X.; Li C.; Xie Y.; He L.-L.; Xiao F.; Zhan K.-B.; Tang Y.-Y.; Li X.; Tang X.-Q. Hippocampal ornithine decarboxylase/spermidine pathway mediates H2S-alleviated cognitive impairment in diabetic rats: Involving enhancment of hippocampal autophagic flux. J. Adv. Res. 2021, 27, 31–40. 10.1016/j.jare.2020.06.007. PubMed DOI PMC
Krystofova J.; Pathipati P.; Russ J.; Sheldon A.; Ferriero D. The Arginase Pathway in Neonatal Brain Hypoxia-Ischemia. Dev. Neurosci. 2019, 40 (5–6), 437–450. 10.1159/000496467. PubMed DOI PMC
Kauppinen R. A.; Alhonen L. I. Transgenic animals as models in the study of the neurobiological role of polyamines. Prog. Neurobiol. 1995, 47 (6), 545–563. 10.1016/0301-0082(95)00037-2. PubMed DOI
Pegg A. E. Toxicity of polyamines and their metabolic products. Chem. Res. Toxicol. 2013, 26 (12), 1782–1800. 10.1021/tx400316s. PubMed DOI
Ivanova S.; Batliwalla F.; Mocco J.; Kiss S.; Huang J.; Mack W.; Coon A.; Eaton J. W.; Al-Abed Y.; Gregersen P. K.; Shohami E.; Connolly E. S. Jr.; Tracey K. J. Neuroprotection in cerebral ischemia by neutralization of 3-aminopropanal. Proc. Natl. Acad. Sci. U.S.A. 2002, 99 (8), 5579–5584. 10.1073/pnas.082609299. PubMed DOI PMC
Li W.; Yuan X. M.; Ivanova S.; Tracey K. J.; Eaton J. W.; Brunk U. T. 3-Aminopropanal, formed during cerebral ischaemia, is a potent lysosomotropic neurotoxin. Biochem. J. 2003, 371 (Pt 2), 429–436. 10.1042/bj20021520. PubMed DOI PMC
Johnston M. V.; Trescher W. H.; Ishida A.; Nakajima W.; Zipursky A. The Developing Nervous System: A Series of Review Articles: Neurobiology of Hypoxic-Ischemic Injury in the Developing Brain. Pediatr. Res. 2001, 49 (6), 735–741. 10.1203/00006450-200106000-00003. PubMed DOI
Armada-Moreira A.; Gomes J. I.; Pina C. C.; Savchak O. K.; Gonçalves-Ribeiro J.; Rei N.; Pinto S.; Morais T. P.; Martins R. S.; Ribeiro F. F.; Sebastião A. M.; Crunelli V.; Vaz S. H. Going the Extra (Synaptic) Mile: Excitotoxicity as the Road Toward Neurodegenerative Diseases. Front. Cell. Neurosci. 2020, 14, 9010.3389/fncel.2020.00090. PubMed DOI PMC
Barth A.; Nguyen L. B.; Barth L.; Newell D. W. Glycine-induced neurotoxicity in organotypic hippocampal slice cultures. Exp. Brain Res. 2005, 161 (3), 351–357. 10.1007/s00221-004-2079-7. PubMed DOI
Papouin T.; Ladépêche L.; Ruel J.; Sacchi S.; Labasque M.; Hanini M.; Groc L.; Pollegioni L.; Mothet J.-P.; Oliet S. H. Synaptic and extrasynaptic NMDA receptors are gated by different endogenous coagonists. Cell 2012, 150 (3), 633–646. 10.1016/j.cell.2012.06.029. PubMed DOI
Aljohani Y.; Dezfuli G.; Vernik D.; Kellar K.. NMDA Receptor- Mediated Release of Norepinephrine and Dopamine in Rat Brain: Effects of Ageing FASEB J. 2021, 35 ( (S1), ), 10.1096/fasebj.2021.35.S1.05270. DOI
Singh A.; Das G.; Kaur M.; Mallick B. N. Noradrenaline Acting on Alpha1 Adrenoceptor as well as by Chelating Iron Reduces Oxidative Burden on the Brain: Implications With Rapid Eye Movement Sleep. Front. Mol. Neurosci. 2019, 12, 710.3389/fnmol.2019.00007. PubMed DOI PMC
Fu Y. C.; Chi C. S.; Yin S. C.; Hwang B.; Chiu Y. T.; Hsu S. L. Norepinephrine induces apoptosis in neonatal rat cardiomyocytes through a reactive oxygen species-TNF alpha-caspase signaling pathway. Cardiovasc. Res. 2004, 62 (3), 558–567. 10.1016/j.cardiores.2004.01.039. PubMed DOI
Kuroko Y.; Yamazaki T.; Tokunaga N.; Akiyama T.; Kitagawa H.; Ishino K.; Sano S.; Mori H. Cardiac epinephrine synthesis and ischemia-induced myocardial epinephrine release. Cardiovasc. Res. 2007, 74 (3), 438–444. 10.1016/j.cardiores.2007.02.018. PubMed DOI
Chen C.; Zhou X.; He J.; Xie Z.; Xia S.; Lu G. The Roles of GABA in Ischemia-Reperfusion Injury in the Central Nervous System and Peripheral Organs. Oxid. Med. Cell. Longevity 2019, 2019, 402839410.1155/2019/4028394. PubMed DOI PMC
Fukuda A.; Muramatsu K.; Okabe A.; Shimano Y.; Hida H.; Fujimoto I.; Nishino H. Changes in intracellular Ca2+ induced by GABAA receptor activation and reduction in Cl- gradient in neonatal rat neocortex. J. Neurophysiol. 1998, 79 (1), 439–446. 10.1152/jn.1998.79.1.439. PubMed DOI
Jiang H.; Lei J.-J.; Zhang Y.-H. Protective effect of topiramate on hypoxic-ischemic brain injury in neonatal rat, Asian Pac. J. Trop. Med. 2014, 7 (6), 496–500. 10.1016/S1995-7645(14)60082-1. PubMed DOI
Anju T. R.; Anitha M.; Chinthu R.; Paulose C. S. Cerebellar GABAA receptor alterations in hypoxic neonatal rats: Role of glucose, oxygen and epinephrine supplementation. Neurochem. Int. 2012, 61 (3), 302–309. 10.1016/j.neuint.2012.05.023. PubMed DOI
Hwang S.; Ham S.; Lee S. E.; Lee Y.; Lee G. H. Hypoxia regulates the level of glutamic acid decarboxylase enzymes and interrupts inhibitory synapse stability in primary cultured neurons. Neurotoxicology 2018, 65, 221–230. 10.1016/j.neuro.2017.10.006. PubMed DOI
Anju T. R.; Kumar T. P.; Paulose C. S. Decreased GABAA Receptors Functional Regulation in the Cerebral Cortex and Brainstem of Hypoxic Neonatal Rats: Effect of Glucose and Oxygen Supplementation. Cell. Mol. Neurobiol. 2010, 30 (4), 599–606. 10.1007/s10571-009-9485-0. PubMed DOI PMC
Briggs S. W.; Galanopoulou A. S. Altered GABA Signaling in Early Life Epilepsies. Neural Plast. 2011, 2011, 52760510.1155/2011/527605. PubMed DOI PMC
van de Looij Y.; Mauconduit F.; Beaumont M.; Valable S.; Farion R.; Francony G.; Payen J.-F.; Lahrech H. Diffusion tensor imaging of diffuse axonal injury in a rat brain trauma model. NMR Biomed. 2012, 25 (1), 93–103. 10.1002/nbm.1721. PubMed DOI
Baer A. G.; Bourdon A. K.; Price J. M.; Campagna S. R.; Jacobson D. A.; Baghdoyan H. A.; Lydic R. Isoflurane anesthesia disrupts the cortical metabolome. J. Neurophysiol. 2020, 124 (6), 2012–2021. 10.1152/jn.00375.2020. PubMed DOI PMC
Ding J.; Ji J.; Rabow Z.; Shen T.; Folz J.; Brydges C. R.; Fan S.; Lu X.; Mehta S.; Showalter M. R.; Zhang Y.; Araiza R.; Bower L. R.; Lloyd K. C. K.; Fiehn O. A metabolome atlas of the aging mouse brain. Nat. Commun. 2021, 12 (1), 602110.1038/s41467-021-26310-y. PubMed DOI PMC
du Sert N. P.; Hurst V.; Ahluwalia A.; Alam S.; Avey M. T.; Baker M.; Browne W. J.; Clark A.; Cuthill I. C.; Dirnagl U.; Emerson M.; Garner P.; Holgate S. T.; Howells D. W.; Karp N. A.; Lazic S. E.; Lidster K.; MacCallum C. J.; Macleod M.; Pearl E. J.; Petersen O. H.; Rawle F.; Reynolds P.; Rooney K.; Sena E. S.; Silberberg S. D.; Steckler T.; Wurbel H. The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. J. Cereb. Blood Flow Metab. 2020, 40 (9), 1769–1777. 10.1177/0271678X20943823. PubMed DOI PMC
Vannucci R. C.; Towfighi J.; Vannucci S. J. Secondary energy failure after cerebral hypoxia-ischemia in the immature rat. J. Cereb. Blood Flow Metab. 2004, 24 (10), 1090–1097. 10.1097/01.WCB.0000133250.03953.63. PubMed DOI
van de Looij Y.; Chatagner A.; Huppi P. S.; Gruetter R.; Sizonenko S. V. Longitudinal MR assessment of hypoxic ischemic injury in the immature rat brain. Magn. Reson. Med. 2011, 65 (2), 305–312. 10.1002/mrm.22617. PubMed DOI
Carloni S.; Crinelli R.; Palma L.; Álvarez F. J.; Piomelli D.; Duranti A.; Balduini W.; Alonso-Alconada D. The Synthetic Cannabinoid URB447 Reduces Brain Injury and the Associated White Matter Demyelination after Hypoxia-Ischemia in Neonatal Rats. ACS Chem. Neurosci. 2020, 11 (9), 1291–1299. 10.1021/acschemneuro.0c00047. PubMed DOI PMC
Hossain M. A.; Russell J. C.; O’Brien R.; Laterra J. Neuronal Pentraxin 1: A Novel Mediator of Hypoxic-Ischemic Injury in Neonatal Brain. J. Neurosci. 2004, 24 (17), 4187–4196. 10.1523/JNEUROSCI.0347-04.2004. PubMed DOI PMC
Serdar C. C.; Cihan M.; Yucel D.; Serdar M. A. Sample size, power and effect size revisited: simplified and practical approaches in pre-clinical, clinical and laboratory studies. Biochem. Med. 2021, 31 (1), 01050210.11613/BM.2021.010502. PubMed DOI PMC
Rodríguez-Fanjul J.; Fernandez-Feijoo C. D.; Camprubi M. C. A new technique for collection of cerebrospinal fluid in rat pups. J. Exp. Neurosci. 2015, 9, 37–41. 10.4137/JEN.S26182. PubMed DOI PMC
Overmyer K. A.; Thonusin C.; Qi N. R.; Burant C. F.; Evans C. R. Impact of anesthesia and euthanasia on metabolomics of mammalian tissues: studies in a C57BL/6J mouse model. PLoS One 2015, 10 (2), e011723210.1371/journal.pone.0117232. PubMed DOI PMC
Ramachandra R.; Subramanian T.. Atlas of the Neonatal Rat Brain; CRC Press: Boca Raton, FL, United States of America, 2011.
Paxinos G.; Watson C.. The Rat Brain in Stereotaxic Coordinates, 6th ed.; Academic Press: Oxford, UK, 2007.
Vonnie D. C. S.; Thomas H.. Introductory Chapter: Histological Microtechniques. In Histology; Thomas H.; Vonnie D. C. S., Eds.; IntechOpen: Rijeka, 2018; Chapter 1.
Vallianatou T.; Nilsson A.; Bjärterot P.; Shariatgorji R.; Slijkhuis N.; Aerts J. T.; Jansson E. T.; Svenningsson P.; Andrén P. E. Rapid Metabolic Profiling of 1 μL Crude Cerebrospinal Fluid by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging Can Differentiate De Novo Parkinson’s Disease. Anal. Chem. 2023, 95 (50), 18352–18360. 10.1021/acs.analchem.3c02900. PubMed DOI PMC
Fridjonsdottir E.; Shariatgorji R.; Nilsson A.; Vallianatou T.; Odell L. R.; Schembri L. S.; Svenningsson P.; Fernagut P.-O.; Crossman A. R.; Bezard E.; Andrén P. E. Mass spectrometry imaging identifies abnormally elevated brain 1-DOPA levels and extrastriatal monoaminergic dysregulation in 1-DOPA-induced dyskinesia. Sci. Adv. 2021, 7 (2), eabe594810.1126/sciadv.abe5948. PubMed DOI PMC
Adcock K. H.; Nedelcu J.; Loenneker T.; Martin E.; Wallimann T.; Wagner B. P. Neuroprotection of creatine supplementation in neonatal rats with transient cerebral hypoxia-ischemia. Dev. Neurosci. 2002, 24 (5), 382–388. 10.1159/000069043. PubMed DOI
Beltman J. G. M.; Sargeant A. J.; Haan H.; van Mechelen W.; de Haan A. Changes in PCr/Cr ratio in single characterized muscle fibre fragments after only a few maximal voluntary contractions in humans. Acta Physiol. Scand. 2004, 180 (2), 187–193. 10.1046/j.0001-6772.2003.01257.x. PubMed DOI