Hypoxic-Ischemic Insult Alters Polyamine and Neurotransmitter Abundance in the Specific Neonatal Rat Brain Subregions

. 2024 Aug 07 ; 15 (15) : 2811-2821. [epub] 20240726

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid39058922

Neonatal hypoxic-ischemic (HI) brain insult is a major cause of neonatal mortality and morbidity. To assess the underlying pathological mechanisms, we mapped the spatiotemporal changes in polyamine, amino acid, and neurotransmitter levels, following HI insult (by the Rice-Vannucci method) in the brains of seven-day-old rat pups. Matrix-assisted laser desorption/ionization mass spectrometry imaging of chemically modified small-molecule metabolites by 4-(anthracen-9-yl)-2-fluoro-1-methylpyridin-1-ium iodide revealed critical HI-related metabolomic changes of 22 metabolites in 14 rat brain subregions, much earlier than light microscopy detected signs of neuronal damage. For the first time, we demonstrated excessive polyamine oxidation and accumulation of 3-aminopropanal in HI neonatal brains, which was later accompanied by neuronal apoptosis enhanced by increases in glycine and norepinephrine in critically affected brain regions. Specifically, putrescine, cadaverine, and 3-aminopropanal increased significantly as early as 12 h postinsult, mainly in motor and somatosensory cortex, hippocampus, and midbrain, followed by an increase in norepinephrine 24 h postinsult, which was predominant in the caudate putamen, the region most vulnerable to HI. The decrease of γ-aminobutyric acid (GABA) and the continuous dysregulation of the GABAergic system together with low taurine levels up to 36 h sustained progressive neurodegenerative cellular processes. The molecular alterations presented here at the subregional rat brain level provided unprecedented insight into early metabolomic changes in HI-insulted neonatal brains, which may further aid in the identification of novel therapeutic targets for the treatment of neonatal HI encephalopathy.

Zobrazit více v PubMed

Millar L. J.; Shi L.; Hoerder-Suabedissen A.; Molnar Z. Neonatal hypoxia ischaemia: mechanisms, models, and therapeutic challenges. Front. Cell. Neurosci. 2017, 11, 7810.3389/fncel.2017.00078. PubMed DOI PMC

Kurinczuk J. J.; White-Koning M.; Badawi N. Epidemiology of neonatal encephalopathy and hypoxic-ischaemic encephalopathy. Early Hum. Dev. 2010, 86 (6), 329–338. 10.1016/j.earlhumdev.2010.05.010. PubMed DOI

Placha K.; Luptakova D.; Baciak L.; Ujhazy E.; Juranek I. Neonatal brain injury as consequence of insufficient cerebral oxygenation. Neuroendocrinol. Lett. 2016, 37 (2), 79–96. PubMed

Douglas-Escobar M.; Weiss M. D. Hypoxic-ischemic encephalopathy: a review for the clinician. JAMA Pediatr. 2015, 169 (4), 397–403. 10.1001/jamapediatrics.2014.3269. PubMed DOI

Northington F. J.; Chavez-Valdez R.; Martin L. J. Neuronal cell death in neonatal hypoxia-ischemia. Ann. Neurol. 2011, 69 (5), 743–758. 10.1002/ana.22419. PubMed DOI PMC

Payabvash S.; Souza L. C.; Wang Y.; Schaefer P. W.; Furie K. L.; Halpern E. F.; Gonzalez R. G.; Lev M. H. Regional ischemic vulnerability of the brain to hypoperfusion: the need for location specific computed tomography perfusion thresholds in acute stroke patients. Stroke 2011, 42 (5), 1255–1260. 10.1161/STROKEAHA.110.600940. PubMed DOI PMC

Baburamani A. A.; Ek C. J.; Walker D. W.; Castillo-Melendez M. Vulnerability of the developing brain to hypoxic-ischemic damage: contribution of the cerebral vasculature to injury and repair?. Front. Physiol. 2012, 3, 42410.3389/fphys.2012.00424. PubMed DOI PMC

Hyman S. E. Neurotransmitters. Curr. Biol. 2005, 15 (5), R154–R158. 10.1016/j.cub.2005.02.037. PubMed DOI

Marques T. M.; van Rumund A.; Kersten I.; Bruinsma I. B.; Wessels H.; Gloerich J.; Kaffa C.; Esselink R. A. J.; Bloem B. R.; Kuiperij H. B.; Verbeek M. M. Identification of cerebrospinal fluid biomarkers for parkinsonism using a proteomics approach. npj Parkinson’s Dis. 2021, 7 (1), 10710.1038/s41531-021-00249-9. PubMed DOI PMC

Hamdy N.; Eide S.; Sun H. S.; Feng Z. P. Animal models for neonatal brain injury induced by hypoxic ischemic conditions in rodents. Exp. Neurol. 2020, 334, 11345710.1016/j.expneurol.2020.113457. PubMed DOI

Lyu H.; Sun D. M.; Ng C. P.; Chen J. F.; He Y. Z.; Lam S. Y.; Zheng Z. Y.; Askarifirouzjaei H.; Wang C. C.; Young W.; Poon W. S. A new hypoxic ischemic encephalopathy model in neonatal rats. Heliyon 2021, 7 (12), e0864610.1016/j.heliyon.2021.e08646. PubMed DOI PMC

Rice J. E. 3rd; Vannucci R. C.; Brierley J. B. The influence of immaturity on hypoxic-ischemic brain damage in the rat. Ann. Neurol. 1981, 9 (2), 131–141. 10.1002/ana.410090206. PubMed DOI

Harteman J. C.; Nikkels P. G.; Benders M. J.; Kwee A.; Groenendaal F.; de Vries L. S. Placental pathology in full-term infants with hypoxic-ischemic neonatal encephalopathy and association with magnetic resonance imaging pattern of brain injury. J. Pediatr. 2013, 163 (4), 968–975.e2. 10.1016/j.jpeds.2013.06.010. PubMed DOI

Pu Y.; Li Q.; Zeng C.; Gao J.; Qi J.; Luo D.; Mahankali S.; Fox T. P.; Gao J. Increased detectability of alpha brain glutamate/glutamine in neonatal hypoxic-ischemic encephalopathy. Am. J. Neuroradiol. 2000, 21, 203–212. PubMed PMC

van de Looij Y.; Dean J. M.; Gunn A. J.; Hüppi P. S.; Sizonenko S. V. Advanced magnetic resonance spectroscopy and imaging techniques applied to brain development and animal models of perinatal injury. Int. J. Dev. Neurosci. 2015, 45, 29–38. 10.1016/j.ijdevneu.2015.03.009. PubMed DOI

Luptakova D.; Baciak L.; Pluhacek T.; Skriba A.; Sediva B.; Havlicek V.; Juranek I. Membrane depolarization and aberrant lipid distributions in the neonatal rat brain following hypoxic-ischaemic insult. Sci. Rep. 2018, 8 (1), 695210.1038/s41598-018-25088-2. PubMed DOI PMC

Xu S.; Waddell J.; Zhu W.; Shi D.; Marshall A. D.; McKenna M. C.; Gullapalli R. P. In vivo longitudinal proton magnetic resonance spectroscopy on neonatal hypoxic-ischemic rat brain injury: Neuroprotective effects of acetyl-L-carnitine. Magn. Reson. Med. 2015, 74 (6), 1530–1542. 10.1002/mrm.25537. PubMed DOI PMC

Johnson M.; Hanson G. R.; Gibb J. W.; Adair J.; Filloux F. Effect of neonatal hypoxia-ischemia on nigro-striatal dopamine receptors and on striatal neuropeptide Y, dynorphin A and substance P concentration in rats. Dev. Brain Res. 1994, 83, 109–118. 10.1016/0165-3806(94)90184-8. PubMed DOI

Liu Y.; Silverstein F. S.; Skoff R.; Barks J. D. Hypoxic-ischemic oligodendroglial injury in neonatal rat brain. Pediatr. Res. 2002, 51 (1), 25–33. 10.1203/00006450-200201000-00007. PubMed DOI

Shariatgorji M.; Nilsson A.; Fridjonsdottir E.; Vallianatou T.; Kallback P.; Katan L.; Savmarker J.; Mantas I.; Zhang X.; Bezard E.; Svenningsson P.; Odell L. R.; Andren P. E. Comprehensive mapping of neurotransmitter networks by MALDI-MS imaging. Nat. Methods 2019, 16 (10), 1021–1028. 10.1038/s41592-019-0551-3. PubMed DOI

Liu J.; Sheldon R. A.; Segal M. R.; Kelly M. J.; Pelton J. G.; Ferriero D. M.; James T. L.; Litt L. 1H nuclear magnetic resonance brain metabolomics in neonatal mice after hypoxia-ischemia distinguished normothermic recovery from mild hypothermia recoveries. Pediatr. Res. 2013, 74 (2), 170–179. 10.1038/pr.2013.88. PubMed DOI PMC

Tanaka E.; Ogawa Y.; Fujii R.; Shimonaka T.; Sato Y.; Hamazaki T.; Nagamura-Inoue T.; Shintaku H.; Tsuji M. Metabolomic analysis and mass spectrometry imaging after neonatal stroke and cell therapies in mouse brains. Sci. Rep. 2020, 10 (1), 2188110.1038/s41598-020-78930-x. PubMed DOI PMC

Takenouchi T.; Sugiura Y.; Morikawa T.; Nakanishi T.; Nagahata Y.; Sugioka T.; Honda K.; Kubo A.; Hishiki T.; Matsuura T.; Hoshino T.; Takahashi T.; Suematsu M.; Kajimura M. Therapeutic hypothermia achieves neuroprotection via a decrease in acetylcholine with a concurrent increase in carnitine in the neonatal hypoxia-ischemia. J. Cereb. Blood Flow Metab. 2015, 35 (5), 794–805. 10.1038/jcbfm.2014.253. PubMed DOI PMC

Martini S.; Parladori R.; Corvaglia L.. Biomarkers of Oxidative Stress in Neonatal Hypoxic-Ischemic Encephalopathy. In Biomarkers in Trauma, Injury and Critical Care; Rajendram R.; Preedy V. R.; Patel V. B., Eds.; Springer International Publishing: Cham, 2023; pp 199–222.

Zhao M.; Zhu P.; Fujino M.; Zhuang J.; Guo H.; Sheikh I.; Zhao L.; Li X.-K. Oxidative Stress in Hypoxic-Ischemic Encephalopathy: Molecular Mechanisms and Therapeutic Strategies. Int. J. Mol. Sci. 2016, 17 (12), 207810.3390/ijms17122078. PubMed DOI PMC

Casero R. A.; Murray Stewart T.; Pegg A. E. Polyamine metabolism and cancer: treatments, challenges and opportunities. Nat. Rev. Cancer 2018, 18 (11), 681–695. 10.1038/s41568-018-0050-3. PubMed DOI PMC

Babu G. N.; Sailor K. A.; Beck J.; Sun D.; Dempsey R. J. Ornithine Decarboxylase Activity in In Vivo and In Vitro Models of Cerebral Ischemia. Neurochem. Res. 2003, 28 (12), 1851–1857. 10.1023/A:1026123809033. PubMed DOI

Hong E. Y.; Kim J. Y.; Upadhyay R.; Park B. J.; Lee J. M.; Kim B. G. Rational engineering of ornithine decarboxylase with greater selectivity for ornithine over lysine through protein network analysis. J. Biotechnol. 2018, 281, 175–182. 10.1016/j.jbiotec.2018.07.020. PubMed DOI

Kang X.; Li C.; Xie Y.; He L.-L.; Xiao F.; Zhan K.-B.; Tang Y.-Y.; Li X.; Tang X.-Q. Hippocampal ornithine decarboxylase/spermidine pathway mediates H2S-alleviated cognitive impairment in diabetic rats: Involving enhancment of hippocampal autophagic flux. J. Adv. Res. 2021, 27, 31–40. 10.1016/j.jare.2020.06.007. PubMed DOI PMC

Krystofova J.; Pathipati P.; Russ J.; Sheldon A.; Ferriero D. The Arginase Pathway in Neonatal Brain Hypoxia-Ischemia. Dev. Neurosci. 2019, 40 (5–6), 437–450. 10.1159/000496467. PubMed DOI PMC

Kauppinen R. A.; Alhonen L. I. Transgenic animals as models in the study of the neurobiological role of polyamines. Prog. Neurobiol. 1995, 47 (6), 545–563. 10.1016/0301-0082(95)00037-2. PubMed DOI

Pegg A. E. Toxicity of polyamines and their metabolic products. Chem. Res. Toxicol. 2013, 26 (12), 1782–1800. 10.1021/tx400316s. PubMed DOI

Ivanova S.; Batliwalla F.; Mocco J.; Kiss S.; Huang J.; Mack W.; Coon A.; Eaton J. W.; Al-Abed Y.; Gregersen P. K.; Shohami E.; Connolly E. S. Jr.; Tracey K. J. Neuroprotection in cerebral ischemia by neutralization of 3-aminopropanal. Proc. Natl. Acad. Sci. U.S.A. 2002, 99 (8), 5579–5584. 10.1073/pnas.082609299. PubMed DOI PMC

Li W.; Yuan X. M.; Ivanova S.; Tracey K. J.; Eaton J. W.; Brunk U. T. 3-Aminopropanal, formed during cerebral ischaemia, is a potent lysosomotropic neurotoxin. Biochem. J. 2003, 371 (Pt 2), 429–436. 10.1042/bj20021520. PubMed DOI PMC

Johnston M. V.; Trescher W. H.; Ishida A.; Nakajima W.; Zipursky A. The Developing Nervous System: A Series of Review Articles: Neurobiology of Hypoxic-Ischemic Injury in the Developing Brain. Pediatr. Res. 2001, 49 (6), 735–741. 10.1203/00006450-200106000-00003. PubMed DOI

Armada-Moreira A.; Gomes J. I.; Pina C. C.; Savchak O. K.; Gonçalves-Ribeiro J.; Rei N.; Pinto S.; Morais T. P.; Martins R. S.; Ribeiro F. F.; Sebastião A. M.; Crunelli V.; Vaz S. H. Going the Extra (Synaptic) Mile: Excitotoxicity as the Road Toward Neurodegenerative Diseases. Front. Cell. Neurosci. 2020, 14, 9010.3389/fncel.2020.00090. PubMed DOI PMC

Barth A.; Nguyen L. B.; Barth L.; Newell D. W. Glycine-induced neurotoxicity in organotypic hippocampal slice cultures. Exp. Brain Res. 2005, 161 (3), 351–357. 10.1007/s00221-004-2079-7. PubMed DOI

Papouin T.; Ladépêche L.; Ruel J.; Sacchi S.; Labasque M.; Hanini M.; Groc L.; Pollegioni L.; Mothet J.-P.; Oliet S. H. Synaptic and extrasynaptic NMDA receptors are gated by different endogenous coagonists. Cell 2012, 150 (3), 633–646. 10.1016/j.cell.2012.06.029. PubMed DOI

Aljohani Y.; Dezfuli G.; Vernik D.; Kellar K.. NMDA Receptor- Mediated Release of Norepinephrine and Dopamine in Rat Brain: Effects of Ageing FASEB J. 2021, 35 ( (S1), ), 10.1096/fasebj.2021.35.S1.05270. DOI

Singh A.; Das G.; Kaur M.; Mallick B. N. Noradrenaline Acting on Alpha1 Adrenoceptor as well as by Chelating Iron Reduces Oxidative Burden on the Brain: Implications With Rapid Eye Movement Sleep. Front. Mol. Neurosci. 2019, 12, 710.3389/fnmol.2019.00007. PubMed DOI PMC

Fu Y. C.; Chi C. S.; Yin S. C.; Hwang B.; Chiu Y. T.; Hsu S. L. Norepinephrine induces apoptosis in neonatal rat cardiomyocytes through a reactive oxygen species-TNF alpha-caspase signaling pathway. Cardiovasc. Res. 2004, 62 (3), 558–567. 10.1016/j.cardiores.2004.01.039. PubMed DOI

Kuroko Y.; Yamazaki T.; Tokunaga N.; Akiyama T.; Kitagawa H.; Ishino K.; Sano S.; Mori H. Cardiac epinephrine synthesis and ischemia-induced myocardial epinephrine release. Cardiovasc. Res. 2007, 74 (3), 438–444. 10.1016/j.cardiores.2007.02.018. PubMed DOI

Chen C.; Zhou X.; He J.; Xie Z.; Xia S.; Lu G. The Roles of GABA in Ischemia-Reperfusion Injury in the Central Nervous System and Peripheral Organs. Oxid. Med. Cell. Longevity 2019, 2019, 402839410.1155/2019/4028394. PubMed DOI PMC

Fukuda A.; Muramatsu K.; Okabe A.; Shimano Y.; Hida H.; Fujimoto I.; Nishino H. Changes in intracellular Ca2+ induced by GABAA receptor activation and reduction in Cl- gradient in neonatal rat neocortex. J. Neurophysiol. 1998, 79 (1), 439–446. 10.1152/jn.1998.79.1.439. PubMed DOI

Jiang H.; Lei J.-J.; Zhang Y.-H. Protective effect of topiramate on hypoxic-ischemic brain injury in neonatal rat, Asian Pac. J. Trop. Med. 2014, 7 (6), 496–500. 10.1016/S1995-7645(14)60082-1. PubMed DOI

Anju T. R.; Anitha M.; Chinthu R.; Paulose C. S. Cerebellar GABAA receptor alterations in hypoxic neonatal rats: Role of glucose, oxygen and epinephrine supplementation. Neurochem. Int. 2012, 61 (3), 302–309. 10.1016/j.neuint.2012.05.023. PubMed DOI

Hwang S.; Ham S.; Lee S. E.; Lee Y.; Lee G. H. Hypoxia regulates the level of glutamic acid decarboxylase enzymes and interrupts inhibitory synapse stability in primary cultured neurons. Neurotoxicology 2018, 65, 221–230. 10.1016/j.neuro.2017.10.006. PubMed DOI

Anju T. R.; Kumar T. P.; Paulose C. S. Decreased GABAA Receptors Functional Regulation in the Cerebral Cortex and Brainstem of Hypoxic Neonatal Rats: Effect of Glucose and Oxygen Supplementation. Cell. Mol. Neurobiol. 2010, 30 (4), 599–606. 10.1007/s10571-009-9485-0. PubMed DOI PMC

Briggs S. W.; Galanopoulou A. S. Altered GABA Signaling in Early Life Epilepsies. Neural Plast. 2011, 2011, 52760510.1155/2011/527605. PubMed DOI PMC

van de Looij Y.; Mauconduit F.; Beaumont M.; Valable S.; Farion R.; Francony G.; Payen J.-F.; Lahrech H. Diffusion tensor imaging of diffuse axonal injury in a rat brain trauma model. NMR Biomed. 2012, 25 (1), 93–103. 10.1002/nbm.1721. PubMed DOI

Baer A. G.; Bourdon A. K.; Price J. M.; Campagna S. R.; Jacobson D. A.; Baghdoyan H. A.; Lydic R. Isoflurane anesthesia disrupts the cortical metabolome. J. Neurophysiol. 2020, 124 (6), 2012–2021. 10.1152/jn.00375.2020. PubMed DOI PMC

Ding J.; Ji J.; Rabow Z.; Shen T.; Folz J.; Brydges C. R.; Fan S.; Lu X.; Mehta S.; Showalter M. R.; Zhang Y.; Araiza R.; Bower L. R.; Lloyd K. C. K.; Fiehn O. A metabolome atlas of the aging mouse brain. Nat. Commun. 2021, 12 (1), 602110.1038/s41467-021-26310-y. PubMed DOI PMC

du Sert N. P.; Hurst V.; Ahluwalia A.; Alam S.; Avey M. T.; Baker M.; Browne W. J.; Clark A.; Cuthill I. C.; Dirnagl U.; Emerson M.; Garner P.; Holgate S. T.; Howells D. W.; Karp N. A.; Lazic S. E.; Lidster K.; MacCallum C. J.; Macleod M.; Pearl E. J.; Petersen O. H.; Rawle F.; Reynolds P.; Rooney K.; Sena E. S.; Silberberg S. D.; Steckler T.; Wurbel H. The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. J. Cereb. Blood Flow Metab. 2020, 40 (9), 1769–1777. 10.1177/0271678X20943823. PubMed DOI PMC

Vannucci R. C.; Towfighi J.; Vannucci S. J. Secondary energy failure after cerebral hypoxia-ischemia in the immature rat. J. Cereb. Blood Flow Metab. 2004, 24 (10), 1090–1097. 10.1097/01.WCB.0000133250.03953.63. PubMed DOI

van de Looij Y.; Chatagner A.; Huppi P. S.; Gruetter R.; Sizonenko S. V. Longitudinal MR assessment of hypoxic ischemic injury in the immature rat brain. Magn. Reson. Med. 2011, 65 (2), 305–312. 10.1002/mrm.22617. PubMed DOI

Carloni S.; Crinelli R.; Palma L.; Álvarez F. J.; Piomelli D.; Duranti A.; Balduini W.; Alonso-Alconada D. The Synthetic Cannabinoid URB447 Reduces Brain Injury and the Associated White Matter Demyelination after Hypoxia-Ischemia in Neonatal Rats. ACS Chem. Neurosci. 2020, 11 (9), 1291–1299. 10.1021/acschemneuro.0c00047. PubMed DOI PMC

Hossain M. A.; Russell J. C.; O’Brien R.; Laterra J. Neuronal Pentraxin 1: A Novel Mediator of Hypoxic-Ischemic Injury in Neonatal Brain. J. Neurosci. 2004, 24 (17), 4187–4196. 10.1523/JNEUROSCI.0347-04.2004. PubMed DOI PMC

Serdar C. C.; Cihan M.; Yucel D.; Serdar M. A. Sample size, power and effect size revisited: simplified and practical approaches in pre-clinical, clinical and laboratory studies. Biochem. Med. 2021, 31 (1), 01050210.11613/BM.2021.010502. PubMed DOI PMC

Rodríguez-Fanjul J.; Fernandez-Feijoo C. D.; Camprubi M. C. A new technique for collection of cerebrospinal fluid in rat pups. J. Exp. Neurosci. 2015, 9, 37–41. 10.4137/JEN.S26182. PubMed DOI PMC

Overmyer K. A.; Thonusin C.; Qi N. R.; Burant C. F.; Evans C. R. Impact of anesthesia and euthanasia on metabolomics of mammalian tissues: studies in a C57BL/6J mouse model. PLoS One 2015, 10 (2), e011723210.1371/journal.pone.0117232. PubMed DOI PMC

Ramachandra R.; Subramanian T.. Atlas of the Neonatal Rat Brain; CRC Press: Boca Raton, FL, United States of America, 2011.

Paxinos G.; Watson C.. The Rat Brain in Stereotaxic Coordinates, 6th ed.; Academic Press: Oxford, UK, 2007.

Vonnie D. C. S.; Thomas H.. Introductory Chapter: Histological Microtechniques. In Histology; Thomas H.; Vonnie D. C. S., Eds.; IntechOpen: Rijeka, 2018; Chapter 1.

Vallianatou T.; Nilsson A.; Bjärterot P.; Shariatgorji R.; Slijkhuis N.; Aerts J. T.; Jansson E. T.; Svenningsson P.; Andrén P. E. Rapid Metabolic Profiling of 1 μL Crude Cerebrospinal Fluid by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging Can Differentiate De Novo Parkinson’s Disease. Anal. Chem. 2023, 95 (50), 18352–18360. 10.1021/acs.analchem.3c02900. PubMed DOI PMC

Fridjonsdottir E.; Shariatgorji R.; Nilsson A.; Vallianatou T.; Odell L. R.; Schembri L. S.; Svenningsson P.; Fernagut P.-O.; Crossman A. R.; Bezard E.; Andrén P. E. Mass spectrometry imaging identifies abnormally elevated brain 1-DOPA levels and extrastriatal monoaminergic dysregulation in 1-DOPA-induced dyskinesia. Sci. Adv. 2021, 7 (2), eabe594810.1126/sciadv.abe5948. PubMed DOI PMC

Adcock K. H.; Nedelcu J.; Loenneker T.; Martin E.; Wallimann T.; Wagner B. P. Neuroprotection of creatine supplementation in neonatal rats with transient cerebral hypoxia-ischemia. Dev. Neurosci. 2002, 24 (5), 382–388. 10.1159/000069043. PubMed DOI

Beltman J. G. M.; Sargeant A. J.; Haan H.; van Mechelen W.; de Haan A. Changes in PCr/Cr ratio in single characterized muscle fibre fragments after only a few maximal voluntary contractions in humans. Acta Physiol. Scand. 2004, 180 (2), 187–193. 10.1046/j.0001-6772.2003.01257.x. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...