• This record comes from PubMed

Zygotic spindle orientation defines cleavage pattern and nuclear status of human embryos

. 2024 Jul 29 ; 15 (1) : 6369. [epub] 20240729

Language English Country England, Great Britain Media electronic

Document type Journal Article

Links

PubMed 39075061
PubMed Central PMC11286845
DOI 10.1038/s41467-024-50732-z
PII: 10.1038/s41467-024-50732-z
Knihovny.cz E-resources

The first embryonic division represents a starting point for the development of a new individual. In many species, tight control over the first embryonic division ensures its accuracy. However, the first division in humans is often erroneous and can impair embryo development. To delineate the spatiotemporal organization of the first mitotic division typical for normal human embryo development, we systematically analyzed a unique timelapse dataset of 300 IVF embryos that developed into healthy newborns. The zygotic division pattern of these best-quality embryos was compared to their siblings that failed to implant or arrested during cleavage stage. We show that division at the right angle to the juxtaposed pronuclei is preferential and supports faithful zygotic division. Alternative configurations of the first mitosis are associated with reduced clustering of nucleoli and multinucleation at the 2-cell stage, which are more common in women of advanced age. Collectively, these data imply that orientation of the first division predisposes human embryos to genetic (in)stability and may contribute to aneuploidy and age-related infertility.

See more in PubMed

Cha, B.-J., Serbus, L. R., Koppetsch, B. S. & Theurkauf, W. E. Kinesin I-dependent cortical exclusion restricts pole plasm to the oocyte posterior. Nat. Cell Biol.4, 592–598 (2002). 10.1038/ncb832 PubMed DOI

Goldstein, B. & Hird, S. N. Specification of the anteroposterior axis in Caenorhabditis elegans. Development122, 1467–1474 (1996). 10.1242/dev.122.5.1467 PubMed DOI

Kikkawa, M., Takano, K. & Shinagawa, A. Location and behavior of dorsal determinants during first cell cycle in Xenopus eggs. Development122, 3687–3696 (1996). 10.1242/dev.122.12.3687 PubMed DOI

Hiiragi, T. & Solter, D. First cleavage plane of the mouse egg is not predetermined but defined by the topology of the two apposing pronuclei. Nature430, 360–364 (2004). 10.1038/nature02595 PubMed DOI

Louvet-Vallée, S., Vinot, S. & Maro, B. Mitotic spindles and cleavage planes are oriented randomly in the two-cell mouse embryo. Curr. Biol.15, 464–469 (2005). 10.1016/j.cub.2004.12.078 PubMed DOI

Plusa, B., Grabarek, J. B., Piotrowska, K., Glover, D. M. & Zernicka-Goetz, M. Site of the previous meiotic division defines cleavage orientation in the mouse embryo. Nat. Cell Biol.4, 811–815 (2002). 10.1038/ncb860 PubMed DOI

Plusa, B., Piotrowska, K. & Zernicka-Goetz, M. Sperm entry position provides a surface marker for the first cleavage plane of the mouse zygote. Genesis32, 193–198 (2002). 10.1002/gene.10027 PubMed DOI

Currie, C. E. et al. The first mitotic division of human embryos is highly error prone. Nat. Commun.13, 6755 (2022). 10.1038/s41467-022-34294-6 PubMed DOI PMC

Hardarson, T., Hanson, C., Sjögren, A. & Lundin, K. Human embryos with unevenly sized blastomeres have lower pregnancy and implantation rates: indications for aneuploidy and multinucleation. Hum. Reprod.16, 313–318 (2001). 10.1093/humrep/16.2.313 PubMed DOI

Wartosch, L. et al. Origins and mechanisms leading to aneuploidy in human eggs. Prenat. Diagn.41, 620–630 (2021). 10.1002/pd.5927 PubMed DOI PMC

Daughtry, B. L. et al. Single-cell sequencing of primate preimplantation embryos reveals chromosome elimination via cellular fragmentation and blastomere exclusion. Genome Res.29, 367–382 (2019). 10.1101/gr.239830.118 PubMed DOI PMC

Gruhn, J. R. et al. Chromosome errors in human eggs shape natural fertility over reproductive life span. Science365, 1466–1469 (2019). 10.1126/science.aav7321 PubMed DOI PMC

Scott, L. Pronuclear scoring as a predictor of embryo development. Reprod. Biomed. Online6, 201–214 (2003). 10.1016/S1472-6483(10)61711-7 PubMed DOI

Gámiz, P. et al. The effect of pronuclear morphology on early development and chromosomal abnormalities in cleavage‐stage embryos. Hum. Reprod.18, 2413–2419 (2003). 10.1093/humrep/deg458 PubMed DOI

Gardner, R. L. Specification of embryonic axes begins before cleavage in normal mouse development. Development128, 839–847 (2001). 10.1242/dev.128.6.839 PubMed DOI

Gardner, R. L. & Davies, T. J. An investigation of the origin and significance of bilateral symmetry of the pronuclear zygote in the mouse. Hum. Reprod.21, 492–502 (2006). 10.1093/humrep/dei318 PubMed DOI

Garello, C. et al. Pronuclear orientation, polar body placement, and embryo quality after intracytoplasmic sperm injection and in-vitro fertilization: further evidence for polarity in human oocytes? Hum. Reprod.14, 2588–2595 (1999). 10.1093/humrep/14.10.2588 PubMed DOI

Payne, D., Flaherty, S. P., Barry, M. F. & Matthews, C. D. Preliminary observations on polar body extrusion and pronuclear formation in human oocytes using time-lapse video cinematography. Hum. Reprod.12, 532–541 (1997). 10.1093/humrep/12.3.532 PubMed DOI

Gianaroli, L., Magli, M. C., Ferraretti, A. P., Fortini, D. & Grieco, N. Pronuclear morphology and chromosomal abnormalities as scoring criteria for embryo selection. Fertil. Steril.80, 341–349 (2003). 10.1016/S0015-0282(03)00596-X PubMed DOI

Tesarik, J. & Greco, E. The probability of abnormal preimplantation development can be predicted by a single static observation on pronuclear stage morphology. Hum. Reprod.14, 1318–1323 (1999). 10.1093/humrep/14.5.1318 PubMed DOI

Coticchio, G., Borini, A., Zacà, C., Makrakis, E. & Sfontouris, I. Fertilization signatures as biomarkers of embryo quality. Hum. Reprod.37, deac123 (2022).10.1093/humrep/deac123 PubMed DOI

Inoue, T. et al. The migration speed of nucleolar precursor bodies in pronuclei affects in vitro fertilization-derived human embryo ploidy status and live birth. Reprod. Med. Biol.22, e12497 (2023). 10.1002/rmb2.12497 PubMed DOI PMC

Cavazza, T. et al. Parental genome unification is highly error-prone in mammalian embryos. Cell184, 2860–2877.e22 (2021). 10.1016/j.cell.2021.04.013 PubMed DOI PMC

Ottolini, C. S. et al. Tripolar mitosis and partitioning of the genome arrests human preimplantation development in vitro. Sci. Rep.7, 9744 (2017). 10.1038/s41598-017-09693-1 PubMed DOI PMC

Fenwick, J. Time from insemination to first cleavage predicts developmental competence of human preimplantation embryos in vitro. Hum. Reprod.17, 407–412 (2002). 10.1093/humrep/17.2.407 PubMed DOI

Lundin, K., Bergh, C. & Hardarson, T. Early embryo cleavage is a strong indicator of embryo quality in human IVF. Hum. Reprod.16, 2652–2657 (2001). 10.1093/humrep/16.12.2652 PubMed DOI

Sakkas, D., Shoukir, Y., Chardonnens, D., Bianchi, P. G. & Campana, A. Early cleavage of human embryos to the two-cell stage after intracytoplasmic sperm injection as an indicator of embryo viability. Hum. Reprod.13, 182–187 (1998). 10.1093/humrep/13.1.182 PubMed DOI

Vázquez-Diez, C., Paim, L. M. G. & FitzHarris, G. Cell-size-independent spindle checkpoint failure underlies chromosome segregation error in mouse embryos. Curr. Biol.29, 865–873.e3 (2019). 10.1016/j.cub.2018.12.042 PubMed DOI

Paim, L. M. G. & FitzHarris, G. Tetraploidy causes chromosomal instability in acentriolar mouse embryos. Nat. Commun.10, 4834 (2019). 10.1038/s41467-019-12772-8 PubMed DOI PMC

McCollin, A., Swann, R. L., Summers, M. C., Handyside, A. H. & Ottolini, C. S. Abnormal cleavage and developmental arrest of human preimplantation embryos in vitro. Eur. J. Med. Genet.63, 103651 (2020). 10.1016/j.ejmg.2019.04.008 PubMed DOI

Kai, Y., Kawano, H. & Yamashita, N. First mitotic spindle formation is led by sperm centrosome-dependent MTOCs in humans. Reproduction161, V19–V22 (2021). 10.1530/REP-21-0061 PubMed DOI

Hashimoto, S. et al. Multinucleation per se is not always sufficient as a marker of abnormality to decide against transferring human embryos. Fertil. Steril.106, 133–139.e6 (2016). 10.1016/j.fertnstert.2016.03.025 PubMed DOI

Ono, Y. et al. Shape of the first mitotic spindles impacts nucleation in human embryos. Nat. Commun.15, 5381 (2024). PubMed PMC

Daphnis, D. D. et al. Detailed FISH analysis of day 5 human embryos reveals the mechanisms leading to mosaic aneuploidy. Hum. Reprod.20, 129–137 (2005). 10.1093/humrep/deh554 PubMed DOI

Kligman, I., Benadiva, C., Alikani, M. & Munné, S. Fertilization and early embryology: the presence of multinucleated blastomerés in human embryos is correlated with chromosomal abnormalities. Hum. Reprod.11, 1492–1498 (1996). 10.1093/oxfordjournals.humrep.a019424 PubMed DOI

Staessen, C. & Van Steirteghem, A. The genetic constitution of multinuclear blastomeres and their derivative daughter blastomeres. Hum. Reprod.13, 1625–1631 (1998). 10.1093/humrep/13.6.1625 PubMed DOI

McCoy, R. C. et al. Meiotic and mitotic aneuploidies drive arrest of in vitro fertilized human preimplantation embryos. Genome Med.15, 77 (2023). 10.1186/s13073-023-01231-1 PubMed DOI PMC

Fishman, E. L. et al. A novel atypical sperm centriole is functional during human fertilization. Nat. Commun.9, 2210 (2018). 10.1038/s41467-018-04678-8 PubMed DOI PMC

Alvarez, N. S., Brachova, P. & Christenson, L. K. Codon composition in human oocytes reveals age-associated defects in mRNA decay. Preprint at bioRxiv10.1101/2021.01.05.425501 (2021).

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...