Reproducible MS/MS library cleaning pipeline in matchms

. 2024 Jul 29 ; 16 (1) : 88. [epub] 20240729

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39075613

Grantová podpora
LM2023069 Research Infrastructure RECETOX RI
857560 European Union's Horizon 2020 research and innovation programme

Odkazy

PubMed 39075613
PubMed Central PMC11285329
DOI 10.1186/s13321-024-00878-1
PII: 10.1186/s13321-024-00878-1
Knihovny.cz E-zdroje

Mass spectral libraries have proven to be essential for mass spectrum annotation, both for library matching and training new machine learning algorithms. A key step in training machine learning models is the availability of high-quality training data. Public libraries of mass spectrometry data that are open to user submission often suffer from limited metadata curation and harmonization. The resulting variability in data quality makes training of machine learning models challenging. Here we present a library cleaning pipeline designed for cleaning tandem mass spectrometry library data. The pipeline is designed with ease of use, flexibility, and reproducibility as leading principles.Scientific contributionThis pipeline will result in cleaner public mass spectral libraries that will improve library searching and the quality of machine-learning training datasets in mass spectrometry. This pipeline builds on previous work by adding new functionality for curating and correcting annotated libraries, by validating structure annotations. Due to the high quality of our software, the reproducibility, and improved logging, we think our new pipeline has the potential to become the standard in the field for cleaning tandem mass spectrometry libraries.

Zobrazit více v PubMed

Aron AT, Gentry EC, McPhail KL, Nothias L-F, Nothias-Esposito M, Bouslimani A, Petras D, Gauglitz JM, Sikora N, Vargas F (2020) Reproducible molecular networking of untargeted mass spectrometry data using GNPS. Nat Protoc 15(6):1954–1991 10.1038/s41596-020-0317-5 PubMed DOI

Beniddir MA, Kang KB, Genta-Jouve G, Huber F, Rogers S, Van Der Hooft JJ (2021) Advances in decomposing complex metabolite mixtures using substructure-and network-based computational metabolomics approaches. Nat Prod Rep 38(11):1967–1993 10.1039/D1NP00023C PubMed DOI PMC

Bittremieux W, Wang M, Dorrestein PC (2022) The critical role that spectral libraries play in capturing the metabolomics community knowledge. Metabolomics 18(12):94 10.1007/s11306-022-01947-y PubMed DOI PMC

Brungs C, Schmid R, Heuckeroth S, Mazumdar A, Drexler M, Šácha P, Dorrestein PC, Petras D, Nothias L-F, Nencka R (2024) Efficient generation of open multi-stage fragmentation mass spectral libraries

de Jonge NF, Hecht H, van der Hooft J, Huber F (2023a) Cleaned libraries and settings matchms library cleaning pipeline Zenodo. 10.5281/zenodo.10160791. Accessed 20 Nov 2023

de Jonge NF, Hecht H, van der Hooft JJ, Huber F (2023b) Filters available in matchms. https://github.com/matchms/matchms/tree/0.26.4/matchms/filtering. Accessed 12 Jun 2024

de Jonge NF, Hecht H, van der Hooft JJ, Huber F (2023c) matchms.

de Jonge NF, Louwen JJ, Chekmeneva E, Camuzeaux S, Vermeir FJ, Jansen RS, Huber F, van der Hooft JJ (2023) MS2Query: reliable and scalable MS2 mass spectra-based analogue search. Nat Commun 14(1):1752 10.1038/s41467-023-37446-4 PubMed DOI PMC

de Jonge NF, Mildau K, Meijer D, Louwen JJ, Bueschl C, Huber F, van der Hooft JJ (2022) Good practices and recommendations for using and benchmarking computational metabolomics metabolite annotation tools. Metabolomics 18(12):103 10.1007/s11306-022-01963-y PubMed DOI PMC

de Jonge NF, Spaaks JH, Diblen F, Verhoeven S, Geng C, Meijer C, Rogers S, Belloum A, Spreeuw H, Villanueva Castilla Efraín M, Ashouritaklimi K, Hecht H, Skoryk M, Ahmad Z, Piciga A, A R, van der Hooft JJ, Huber F (2024) matchms. 10.5281/zenodo.11657300. Accessed 14 Jun 2024

Dührkop K, Shen H, Meusel M, Rousu J, Böcker S (2015) Searching molecular structure databases with tandem mass spectra using CSI: FingerID. Proc Natl Acad Sci 112(41):12580–12585 10.1073/pnas.1509788112 PubMed DOI PMC

Fan Z, Alley A, Ghaffari K, Ressom HW (2020) MetFID: artificial neural network-based compound fingerprint prediction for metabolite annotation. Metabolomics 16:1–1110.1007/s11306-020-01726-7 PubMed DOI PMC

GNPS Library. (2023). https://gnps-external.ucsd.edu/gnpslibrary/ALL_GNPS_NO_PROPOGATED.mgf Accessed 21–08–2023

Heiles S (2021) Advanced tandem mass spectrometry in metabolomics and lipidomics—methods and applications. Anal Bioanal Chem 413(24):5927–5948 10.1007/s00216-021-03425-1 PubMed DOI PMC

Horai H, Arita M, Kanaya S, Nihei Y, Ikeda T, Suwa K, Ojima Y, Tanaka K, Tanaka S, Aoshima K (2010) MassBank: a public repository for sharing mass spectral data for life sciences. J Mass Spectrom 45(7):703–714 10.1002/jms.1777 PubMed DOI

Huber F, van der Burg S, van der Hooft JJ, Ridder L (2021) MS2DeepScore: a novel deep learning similarity measure to compare tandem mass spectra. Journal of cheminformatics 13(1):84 10.1186/s13321-021-00558-4 PubMed DOI PMC

Huber F, Verhoeven S, Meijer C, Spreeuw H, Villanueva Castilla Efraín M, Geng C, van der Hooft J, Rogers S, Belloum A, Diblen F, Spaaks JH (2020) matchms-processing and similarity evaluation of mass spectrometry data. J Open Source Softw 5(52):241110.21105/joss.02411 DOI

Landrum G, Tosco P, Kelley B, Rodriguez R, Cosgrove D, Vianello R, Riniker S, Gedeck P, Jones G, Schneider N, Kawashima E, Nealschneider D, Dalke A, Swain M, Cole B, Turk S, Savelev A, Vaucher A, Wójcikowski M, Biggs JD (2024) rdkit/rdkit: 2024_03_3 (Q1 2024) Release. Zenodo. 10.5281/zenodo.11396708. Accessed 2024-03 Mar 2024

MoNA. Massbank of North America. https://mona.fiehnlab.ucdavis.edu/. Accessed 27 May 2024

NIST NIST Tandem mass spectral library. https://www.nist.gov/programs-projects/tandem-mass-spectral-library. Accessed 20 Nov 2023

Pfeuffer J, Bielow C, Wein S, Jeong K, Netz E, Walter A, Alka O, Nilse L, Colaianni PD, McCloskey D (2024) OpenMS 3 enables reproducible analysis of large-scale mass spectrometry data. Nature Method. 10.1038/s41592-024-02197-710.1038/s41592-024-02197-7 PubMed DOI

Schmid R, Heuckeroth S, Korf A, Smirnov A, Myers O, Dyrlund TS, Bushuiev R, Murray KJ, Hoffmann N, Lu M (2023) Integrative analysis of multimodal mass spectrometry data in MZmine 3. Nat Biotechnol 41(4):447–449 10.1038/s41587-023-01690-2 PubMed DOI PMC

Tsugawa H, Cajka T, Kind T, Ma Y, Higgins B, Ikeda K, Kanazawa M, VanderGheynst J, Fiehn O, Arita M (2015) MS-DIAL: data-independent MS/MS deconvolution for comprehensive metabolome analysis. Nat Methods 12(6):523–526 10.1038/nmeth.3393 PubMed DOI PMC

Wang M, Carver JJ, Phelan VV, Sanchez LM, Garg N, Peng Y, Nguyen DD, Watrous J, Kapono CA, Luzzatto-Knaan T (2016) Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nat Biotechnol 34(8):828–837 10.1038/nbt.3597 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...