Neutrophil extracellular traps characterize caseating granulomas
Language English Country England, Great Britain Media electronic
Document type Journal Article
Grant support
202006370030
China Scholarship Council (CSC)
Grant 97744
Volkswagen Foundation (VolkswagenStiftung)
Grant 97744
Volkswagen Foundation (VolkswagenStiftung)
2886 PANDORA Project-No. B3
Deutsche Forschungsgemeinschaft (German Research Foundation)
CRC1181-261193037 (C03)
Deutsche Forschungsgemeinschaft (German Research Foundation)
SFB/TRR 241 (B04)
Deutsche Forschungsgemeinschaft (German Research Foundation)
PubMed
39085192
PubMed Central
PMC11291884
DOI
10.1038/s41419-024-06892-3
PII: 10.1038/s41419-024-06892-3
Knihovny.cz E-resources
- MeSH
- Neutrophil Activation MeSH
- Adult MeSH
- Extracellular Traps * metabolism MeSH
- Granuloma * pathology metabolism MeSH
- Middle Aged MeSH
- Humans MeSH
- Neutrophils * metabolism MeSH
- Case-Control Studies MeSH
- Tuberculosis pathology blood MeSH
- Cell-Free Nucleic Acids blood MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Cell-Free Nucleic Acids MeSH
Tuberculosis (TB) remains one of the top 10 causes of death worldwide and still poses a serious challenge to public health. Recent attention to neutrophils has uncovered unexplored areas demanding further investigation. Therefore, the aim of this study was to determine neutrophil activation and circulatory neutrophil extracellular trap (NET) formation in various types of TB. Sera from TB patients (n = 91) and healthy controls (NHD; n = 38) were analyzed for NE-DNA and MPO-DNA complexes, cell-free DNA (cfDNA), and protease activity (elastase). We show that these NET parameters were increased in TB sera. Importantly, NET formation and NE activity were elevated in TB patients with extensive tissue damage when compared to those with minor damage and in patients with relapse, compared to new cases. We discuss the importance of balancing NET formation to prevent tissue damage or even relapse and argue to analyze circulating NET parameters to monitor the risk of disease relapse. To investigate the tissues for NETs and to find the source of the circulating NET degradation products, we collected sections of granulomas in lung and lymph node biopsies. Samples from other diseases with granulomas, including sarcoidosis (SARC) and apical periodontitis (AP), served as controls. Whereas NET formation characterizes the caseating granulomas, both caseating and non-caseating granulomas harbor DNA with unusual conformation. As TB is associated with hypercoagulation and thromboembolism, we further imaged the pulmonary vessels of TB patients and detected vascular occlusions with neutrophil aggregates. This highlights the dual role of neutrophils in the pathology of TB.
BIOCEV 1st Faculty of Medicine Charles University Vestec Czech Republic
FAU Profile Center Immunomedicine Erlangen Nürnberg Erlangen Germany
Lectinotest R and D Lviv Ukraine
MVZ Center for Histology Cytology and Molecular Diagnostics Trier Germany
Outpatient Department Merefa District Hospital Merefa Ukraine
See more in PubMed
Fogel N. Tuberculosis: a disease without boundaries. Tuberculosis. 2015;95:527–31. 10.1016/j.tube.2015.05.017 PubMed DOI
Dudnyk A, Butov D, Crudu V, Lange C, Chesov D. MDR-TB in Eastern Europe in the era of the TB elimination action framework. Int J Tuberc Lung Dis. 2017;21:2–3. 10.5588/ijtld.16.0732 PubMed DOI
Chesov D, Butov D, Reimann M, Heyckendorf J, Myasoedov V, Butov T, et al. Impact of lung function on treatment outcome in patients with TB. Int J Tuberc Lung Dis. 2021;25:277–84. 10.5588/ijtld.20.0949 PubMed DOI
Seung KJ, Keshavjee S, Rich ML. Multidrug-resistant tuberculosis and extensively drug-resistant tuberculosis. Cold Spring Harb Perspect Med. 2015;5:a017863. 10.1101/cshperspect.a017863 PubMed DOI PMC
Kurz SG, Furin JJ, Bark CM. Drug-resistant tuberculosis: challenges and progress. Infect Dis Clin North Am. 2016;30:509–22. 10.1016/j.idc.2016.02.010 PubMed DOI PMC
Polena H, Boudou F, Tilleul S, Dubois-Colas N, Lecointe C, Rakotosamimanana N, et al. Mycobacterium tuberculosis exploits the formation of new blood vessels for its dissemination. Sci Rep. 2016;6:33162. 10.1038/srep33162 PubMed DOI PMC
Cavalcante-Silva LHA, Almeida FS, Andrade AG, Comberlang FC, Cardoso LL, Vanderley SER, et al. Mycobacterium tuberculosis in a trap: the role of neutrophil extracellular traps in tuberculosis. Int J Mol Sci. 2023;24:11385. PubMed PMC
Ravimohan S, Kornfeld H, Weissman D, Bisson GP. Tuberculosis and lung damage: from epidemiology to pathophysiology. Eur Respir Rev. 2018;27:170077. 10.1183/16000617.0077-2017 PubMed DOI PMC
Huang L, Russell DG. Protective immunity against tuberculosis: what does it look like and how do we find it? Curr Opin Immunol. 2017;48:44–50. 10.1016/j.coi.2017.08.001 PubMed DOI PMC
Young C, Walzl G, Du Plessis N. Therapeutic host-directed strategies to improve outcome in tuberculosis. Mucosal Immunol. 2020;13:190–204. 10.1038/s41385-019-0226-5 PubMed DOI PMC
van der Meer AJ, Zeerleder S, Blok DC, Kager LM, Lede IO, Rahman W, et al. Neutrophil extracellular traps in patients with pulmonary tuberculosis. Respir Res. 2017;18:181. 10.1186/s12931-017-0663-1 PubMed DOI PMC
Braian C, Hogea V, Stendahl O. Mycobacterium tuberculosis-induced neutrophil extracellular traps activate human macrophages. J Innate Immun. 2013;5:591–602. 10.1159/000348676 PubMed DOI PMC
Ramos-Kichik V, Mondragon-Flores R, Mondragon-Castelan M, Gonzalez-Pozos S, Muniz-Hernandez S, Rojas-Espinosa O, et al. Neutrophil extracellular traps are induced by Mycobacterium tuberculosis. Tuberculosis. 2009;89:29–37. 10.1016/j.tube.2008.09.009 PubMed DOI
Hilda JN, Das S, Tripathy SP, Hanna LE. Role of neutrophils in tuberculosis: a bird’s eye view. Innate Immun. 2020;26:240–7. 10.1177/1753425919881176 PubMed DOI PMC
Corleis B, Korbel D, Wilson R, Bylund J, Chee R, Schaible UE. Escape of Mycobacterium tuberculosis from oxidative killing by neutrophils. Cell Microbiol. 2012;14:1109–21. 10.1111/j.1462-5822.2012.01783.x PubMed DOI
Dallenga T, Repnik U, Corleis B, Eich J, Reimer R, Griffiths GW, et al. M. tuberculosis-induced necrosis of infected neutrophils promotes bacterial growth following phagocytosis by macrophages. Cell Host Microbe. 2017;22:519–30.e3. 10.1016/j.chom.2017.09.003 PubMed DOI
Knopf J, Leppkes M, Schett G, Herrmann M, Munoz LE. Aggregated NETs sequester and detoxify extracellular histones. Front Immunol. 2019;10:2176. 10.3389/fimmu.2019.02176 PubMed DOI PMC
Song Y, Kadiyala U, Weerappuli P, Valdez JJ, Yalavarthi S, Louttit C, et al. Antimicrobial microwebs of DNA-histone inspired from neutrophil extracellular traps. Adv Mater. 2019;31:e1807436. 10.1002/adma.201807436 PubMed DOI PMC
Knopf J, Mahajan A, Munoz LE, Herrmann M. Formation and clearance of NETs in Health and disease. Cells. 2022;11:4022. PubMed PMC
Zlatar L, Timm T, Lochnit G, Bilyy R, Bauerle T, Munoz-Becerra M, et al. Neutrophil extracellular traps drive dacryolithiasis. Cells. 2023;12:1857. PubMed PMC
Schauer C, Janko C, Munoz LE, Zhao Y, Kienhofer D, Frey B, et al. Aggregated neutrophil extracellular traps limit inflammation by degrading cytokines and chemokines. Nat Med. 2014;20:511–7. 10.1038/nm.3547 PubMed DOI
Bilyy R, Fedorov V, Vovk V, Leppkes M, Dumych T, Chopyak V, et al. Neutrophil extracellular traps form a barrier between necrotic and viable areas in acute abdominal inflammation. Front Immunol. 2016;7:424. 10.3389/fimmu.2016.00424 PubMed DOI PMC
Repasy T, Lee J, Marino S, Martinez N, Kirschner DE, Hendricks G, et al. Intracellular bacillary burden reflects a burst size for Mycobacterium tuberculosis in vivo. PLoS Pathog. 2013;9:e1003190. 10.1371/journal.ppat.1003190 PubMed DOI PMC
Su R, Peng YP, Deng Z, Deng YT, Ye JQ, Guo Y, et al. Mycobacterium tuberculosis infection induces low-density granulocyte generation by promoting neutrophil extracellular trap formation via ROS pathway. Front Microbiol. 2019;10:1468. 10.3389/fmicb.2019.01468 PubMed DOI PMC
de Melo MGM, Mesquita EDD, Oliveira MM, da Silva-Monteiro C, Silveira AKA, et al. Imbalance of NET and Alpha-1-antitrypsin in tuberculosis patients is related with hyper inflammation and severe lung tissue damage. Front Immunol. 2018;9:3147. 10.3389/fimmu.2018.03147 PubMed DOI PMC
Porto BN, Stein RT. Neutrophil extracellular traps in pulmonary diseases: too much of a good thing? Front Immunol. 2016;7:311. 10.3389/fimmu.2016.00311 PubMed DOI PMC
Singh J, Boettcher M, Dolling M, Heuer A, Hohberger B, Leppkes M, et al. Moonlighting chromatin: when DNA escapes nuclear control. Cell Death Differ. 2023;30:861–75. 10.1038/s41418-023-01124-1 PubMed DOI PMC
Lin PL, Flynn JL. The end of the binary era: revisiting the spectrum of tuberculosis. J Immunol. 2018;201:2541–8. 10.4049/jimmunol.1800993 PubMed DOI PMC
Muefong CN, Sutherland JS. Neutrophils in tuberculosis-associated inflammation and lung pathology. Front Immunol. 2020;11:962. 10.3389/fimmu.2020.00962 PubMed DOI PMC
Alcantara CA, Glassman I, Nguyen KH, Parthasarathy A, Venketaraman V. Neutrophils in Mycobacterium tuberculosis. Vaccines. 2023;11:631. PubMed PMC
Agrawal R, Kee AR, Ang L, Tun Hang Y, Gupta V, Kon OM, et al. Tuberculosis or sarcoidosis: opposite ends of the same disease spectrum? Tuberculosis. 2016;98:21–6. 10.1016/j.tube.2016.01.003 PubMed DOI
Marakalala MJ, Raju RM, Sharma K, Zhang YJ, Eugenin EA, Prideaux B, et al. Inflammatory signaling in human tuberculosis granulomas is spatially organized. Nat Med. 2016;22:531–8. 10.1038/nm.4073 PubMed DOI PMC
Rao M, Ippolito G, Mfinanga S, Ntoumi F, Yeboah-Manu D, Vilaplana C, et al. Latent TB infection (LTBI)—Mycobacterium tuberculosis pathogenesis and the dynamics of the granuloma battleground. Int J Infect Dis. 2019;80S:S58–S61. 10.1016/j.ijid.2019.02.035 PubMed DOI
Drake WP, Newman LS. Mycobacterial antigens may be important in sarcoidosis pathogenesis. Curr Opin Pulm Med. 2006;12:359–63. 10.1097/01.mcp.0000239554.01068.94 PubMed DOI
Seve P, Pacheco Y, Durupt F, Jamilloux Y, Gerfaud-Valentin M, Isaac S, et al. Sarcoidosis: a clinical overview from symptoms to diagnosis. Cells. 2021;10:766. PubMed PMC
Gupta D, Agarwal R, Aggarwal AN, Jindal SK. Sarcoidosis and tuberculosis: the same disease with different manifestations or similar manifestations of different disorders. Curr Opin Pulm Med. 2012;18:506–16. 10.1097/MCP.0b013e3283560809 PubMed DOI
Brownell I, Ramirez-Valle F, Sanchez M, Prystowsky S. Evidence for mycobacteria in sarcoidosis. Am J Respir Cell Mol Biol. 2011;45:899–905. 10.1165/rcmb.2010-0433TR PubMed DOI PMC
Orme IM, Basaraba RJ. The formation of the granuloma in tuberculosis infection. Semin Immunol. 2014;26:601–9. 10.1016/j.smim.2014.09.009 PubMed DOI
Binesh F, Halvani H, Navabii H. Systemic sarcoidosis with caseating granuloma. BMJ Case Rep. 2012;2012:bcr0520114278. PubMed PMC
Nair PN. On the causes of persistent apical periodontitis: a review. Int Endod J. 2006;39:249–81. 10.1111/j.1365-2591.2006.01099.x PubMed DOI
Menon N, Kishen A. Nociceptor-macrophage interactions in apical periodontitis: how biomolecules link inflammation with pain. Biomolecules. 2023;13:1193. PubMed PMC
Marton IJ, Kiss C. Protective and destructive immune reactions in apical periodontitis. Oral Microbiol Immunol. 2000;15:139–50. 10.1034/j.1399-302x.2000.150301.x PubMed DOI
Shen J, Zhang H, Jin S, Li N, Fan J. [One year evaluation of endodontic microsurgery in 54 cases with persistent apical periodontitis]. Hua Xi Kou Qiang Yi Xue Za Zhi. 2012;30:388–92. PubMed
Budvytiene I, Banaei N. Simple processing of formalin-fixed paraffin-embedded tissue for accurate testing with the Xpert MTB/RIF assay. J Clin Microbiol. 2020;58:10–1128. PubMed PMC
Knopf J, Sjowall J, Frodlund M, Hinkula J, Herrmann M, Sjowall C. NET formation in systemic lupus erythematosus: changes during the COVID-19 pandemic. Cells. 2022;11:2619. PubMed PMC
Niazi MK, Beamer G, Gurcan MN. Detecting and characterizing cellular responses to Mycobacterium tuberculosis from histology slides. Cytom A. 2014;85:151–61.10.1002/cyto.a.22424 PubMed DOI
Njau AN, Gakinya SM, Sayed S, Moloo Z. Xpert((R)) MTB/RIF assay on formalin-fixed paraffin-embedded tissues in the diagnosis of extrapulmonary tuberculosis. Afr J Lab Med. 2019;8:748. 10.4102/ajlm.v8i1.748 PubMed DOI PMC
Ha H, Kim KH, Park JH, Lee JK, Heo EY, Kim JS, et al. Thromboembolism in Mycobacterium tuberculosis infection: analysis and literature review. Infect Chemother. 2019;51:142–9. 10.3947/ic.2019.51.2.142 PubMed DOI PMC
Singh J, Herrmann I, Mahajan A, Schauer C, Shan X, Hartmann A, et al. A pleomorphic puzzle: heterogeneous pulmonary vascular occlusions in patients with COVID-19. Int J Mol Sci. 2022;23:15126. PubMed PMC
Leppkes M, Knopf J, Naschberger E, Lindemann A, Singh J, Herrmann I, et al. Vascular occlusion by neutrophil extracellular traps in COVID-19. EBioMedicine. 2020;58:102925. 10.1016/j.ebiom.2020.102925 PubMed DOI PMC
Li Q, Wang Y, Sun Q, Knopf J, Herrmann M, Lin L, et al. Immune response in COVID-19: what is next? Cell Death Differ. 2022;29:1107–22. 10.1038/s41418-022-01015-x PubMed DOI PMC
Rahlwes KC, Dias BRS, Campos PC, Alvarez-Arguedas S, Shiloh MU. Pathogenicity and virulence of Mycobacterium tuberculosis. Virulence. 2023;14:2150449. 10.1080/21505594.2022.2150449 PubMed DOI PMC
Moideen K, Kumar NP, Nair D, Banurekha VV, Bethunaickan R, Babu S. Heightened systemic levels of neutrophil and eosinophil granular proteins in pulmonary tuberculosis and reversal following treatment. Infect Immun. 2018;86:10–1128. PubMed PMC
Schechter MC, Buac K, Adekambi T, Cagle S, Celli J, Ray SM, et al. Neutrophil extracellular trap (NET) levels in human plasma are associated with active TB. PLoS ONE. 2017;12:e0182587. 10.1371/journal.pone.0182587 PubMed DOI PMC
Moreira-Teixeira L, Stimpson PJ, Stavropoulos E, Hadebe S, Chakravarty P, Ioannou M, et al. Type I IFN exacerbates disease in tuberculosis-susceptible mice by inducing neutrophil-mediated lung inflammation and NETosis. Nat Commun. 2020;11:5566. 10.1038/s41467-020-19412-6 PubMed DOI PMC
Masuda S, Nonokawa M, Futamata E, Nishibata Y, Iwasaki S, Tsuji T, et al. Formation and disordered degradation of neutrophil extracellular traps in necrotizing lesions of anti-neutrophil cytoplasmic antibody-associated vasculitis. Am J Pathol. 2019;189:839–46. 10.1016/j.ajpath.2019.01.007 PubMed DOI
Ramakrishnan L. Revisiting the role of the granuloma in tuberculosis. Nat Rev Immunol. 2012;12:352–66. 10.1038/nri3211 PubMed DOI
Bezanilla M, Drake B, Nudler E, Kashlev M, Hansma PK, Hansma HG. Motion and enzymatic degradation of DNA in the atomic force microscope. Biophys J. 1994;67:2454–9. 10.1016/S0006-3495(94)80733-7 PubMed DOI PMC
Ravichandran S, Subramani VK, Kim KK. Z-DNA in the genome: from structure to disease. Biophys Rev. 2019;11:383–7. 10.1007/s12551-019-00534-1 PubMed DOI PMC
Buzzo JR, Devaraj A, Gloag ES, Jurcisek JA, Robledo-Avila F, Kesler T, et al. Z-form extracellular DNA is a structural component of the bacterial biofilm matrix. Cell. 2021;184:5740–58.e17. 10.1016/j.cell.2021.10.010 PubMed DOI PMC
Herbert A. Z-DNA and Z-RNA in human disease. Commun Biol. 2019;2:7. 10.1038/s42003-018-0237-x PubMed DOI PMC
Leshner M, Wang S, Lewis C, Zheng H, Chen XA, Santy L, et al. PAD4 mediated histone hypercitrullination induces heterochromatin decondensation and chromatin unfolding to form neutrophil extracellular trap-like structures. Front Immunol. 2012;3:307. 10.3389/fimmu.2012.00307 PubMed DOI PMC
Stollar BD. Antibodies to DNA. CRC. Crit Rev Biochem. 1986;20:1–36. 10.3109/10409238609115899 PubMed DOI
Suck D, Oefner C. Structure of DNase I at 2.0 A resolution suggests a mechanism for binding to and cutting DNA. Nature. 1986;321:620–5. 10.1038/321620a0 PubMed DOI
Englert H, Gobel J, Khong D, Omidi M, Wolska N, Konrath S, et al. Targeting NETs using dual-active DNase1 variants. Front Immunol. 2023;14:1181761. 10.3389/fimmu.2023.1181761 PubMed DOI PMC
Baka Z, Gyorgy B, Geher P, Buzas EI, Falus A, Nagy G. Citrullination under physiological and pathological conditions. Jt Bone Spine. 2012;79:431–6.10.1016/j.jbspin.2012.01.008 PubMed DOI
Yipp BG, Petri B, Salina D, Jenne CN, Scott BN, Zbytnuik LD, et al. Infection-induced NETosis is a dynamic process involving neutrophil multitasking in vivo. Nat Med. 2012;18:1386–93. 10.1038/nm.2847 PubMed DOI PMC
Seper A, Hosseinzadeh A, Gorkiewicz G, Lichtenegger S, Roier S, Leitner DR, et al. Vibrio cholerae evades neutrophil extracellular traps by the activity of two extracellular nucleases. PLoS Pathog. 2013;9:e1003614. 10.1371/journal.ppat.1003614 PubMed DOI PMC
Mawuenyega KG, Forst CV, Dobos KM, Belisle JT, Chen J, Bradbury EM, et al. Mycobacterium tuberculosis functional network analysis by global subcellular protein profiling. Mol Biol Cell. 2005;16:396–404. 10.1091/mbc.e04-04-0329 PubMed DOI PMC
Dang G, Cui Y, Wang L, Li T, Cui Z, Song N, et al. Extracellular sphingomyelinase Rv0888 of Mycobacterium tuberculosis contributes to pathological lung injury of mycobacterium smegmatis in mice via inducing formation of neutrophil extracellular traps. Front Immunol. 2018;9:677. 10.3389/fimmu.2018.00677 PubMed DOI PMC
Dang G, Cao J, Cui Y, Song N, Chen L, Pang H, et al. Characterization of Rv0888, a novel extracellular nuclease from Mycobacterium tuberculosis. Sci Rep. 2016;6:19033. 10.1038/srep19033 PubMed DOI PMC
Datta M, Via LE, Kamoun WS, Liu C, Chen W, Seano G, et al. Anti-vascular endothelial growth factor treatment normalizes tuberculosis granuloma vasculature and improves small molecule delivery. Proc Natl Acad Sci USA. 2015;112:1827–32. 10.1073/pnas.1424563112 PubMed DOI PMC