MXene-Derived Oxide Nanoheterostructures for Photocatalytic Sulfamethoxazole Degradation
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39086512
PubMed Central
PMC11287779
DOI
10.1021/acsanm.4c02523
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Herein, we report for the first time the use of ternary oxide nanoheterostructure photocatalysts derived from (Nb y , Ti1-y )2CT x MXene in the treatment of water. Three different compositions of binary MXenes, viz., (Ti0.75Nb0.25)2CT x , (Ti0.5Nb0.5)2CT x , and (Ti0.25Nb0.75)2CT x (with T x = OH, F, and Cl), were used as single-source precursor to produce TiNbO x -3:1, TiNbO x -1:1, and TiNbO x -1:3 by controlled-atmosphere thermal oxidation. Phase identification and Le Bail refinements confirmed the presence of a mixture of rutile TiO2 and monoclinic Ti2Nb10O29. Morphological investigations through scanning and transmission electron microscopies revealed the retention of layered nanostructures from the MXene precursors and the fusion of TiO2 and Ti2Nb10O29 nanoparticles in forming nanosheets. Among the three oxide nanoheterostructures, TiNbO x -3:1 exhibited the best photocatalytic performance by the removal of 83% of sulfamethoxazole (SMX) after 2 h of reaction. Such a result is explained by a complex influence of structural, morphological, and electronic properties since TiNbO x -3:1 consisted of small-sized crystallites (40-70 nm) and possessed a higher surface area. The suggested electronic band structure is a type-II heterojunction, where the recombination of electrons and holes is minimized during photocatalytic reactions. The photocatalytic degradation of SMX was promoted by the attack of •OH, as evidenced by the detection of 2.2 μM •OH, using coumarin as a probe. This study highlights the potential application of MXene-derived oxide nanoheterostructures in wastewater treatment.
Department of Chemistry Tulane University New Orleans Louisiana 70118 United States
Materials Chemistry Group Department of Chemistry University of Delhi Delhi 110007 India
Zobrazit více v PubMed
Wang H. J.; Li X.; Zhao X. X.; Li C. Y.; Song X. H.; Zhang P.; Huo P. W.; Li X. Research progress on semiconductor photocatalysts and their modification strategies for environmental remediation. Chin. J. Catal. 2022, 43 (2), 178–214. 10.1016/S1872-2067(21)63910-4. DOI
Guo Z.; Zhou J.; Zhu L.; Sun Z. MXene: a promising photocatalyst for water splitting. J. Mater. Chem., A 2016, 4 (29), 11446–11452. 10.1039/C6TA04414J. DOI
Shen R.; Xie J.; Xiang Q.; Chen X.; Jiang J.; Li X. Ni-based photocatalytic H2-production cocatalysts2. Chin. J. Catal. 2019, 40 (3), 240–288. 10.1016/S1872-2067(19)63294-8. DOI
Zhao Y.; Li Z.; Li M.; Liu J.; Liu X.; Waterhouse G. I.; Wang Y.; Zhao J.; Gao W.; Zhang Z.; Long R.; et al. Reductive transformation of layered-double-hydroxide nanosheets to Fe-based heterostructures for efficient visible-light photocatalytic hydrogenation of CO. Adv. Mater. 2018, 30 (36), 180312710.1002/adma.201803127. PubMed DOI
Li X.; Yu J.; Jaroniec M.; Chen X. Cocatalysts for selective photoreduction of CO2 into solar fuels. Chem. Rev. 2019, 119 (6), 3962–4179. 10.1021/acs.chemrev.8b00400. PubMed DOI
Fan Y.; Ma W.; Han D.; Gan S.; Dong X.; Niu L. Convenient recycling of 3D AgX/graphene aerogels (X = Br, Cl) for efficient photocatalytic degradation of water pollutants. Adv. Mater. 2015, 27 (25), 3767–3773. 10.1002/adma.201500391. PubMed DOI
Khaki M. R. D.; Shafeeyan M. S.; Raman A. A. A.; Daud W. M. A. W. Application of doped photocatalysts for organic pollutant degradation-A review. J. Environ. Manage. 2017, 198, 78–94. 10.1016/j.jenvman.2017.04.099. PubMed DOI
Nikokavoura A.; Trapalis C. Alternative photocatalysts to TiO2 for the photocatalytic reduction of CO2. Appl. Surf. Sci. 2017, 391, 149–174. 10.1016/j.apsusc.2016.06.172. DOI
Karkman A.; Do T. T.; Walsh F.; Virta M. P. Antibiotic-resistance genes in wastewater. Trends Microbiol. 2018, 26 (3), 220–228. 10.1016/j.tim.2017.09.005. PubMed DOI
Wu Z.; Song W.; Xu X.; Yuan J.; Lv W.; Yao Y. High 1T phase and sulfur vacancies in C-MoS2@ Fe induced by ascorbic acid for synergistically enhanced contaminants degradation. Sep. Purif. Technol. 2022, 286, 12051110.1016/j.seppur.2022.120511. DOI
Fujishima A.; Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238 (5358), 37–38. 10.1038/238037a0. PubMed DOI
Chen X.; Mao S. S. Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem. Rev. 2007, 107 (7), 2891–2959. 10.1021/cr0500535. PubMed DOI
Wang Y.; Ding Z.; Arif N.; Jiang W. C.; Zeng Y. J. 2D material based heterostructures for solar light-driven photocatalytic H2 production. Mater. Adv. 2022, 3 (8), 3389–3417. 10.1039/D2MA00191H. DOI
Su Q.; Li Y.; Hu R.; Song F.; Liu S.; Guo C.; Zhu S.; Liu W.; Pan J. Heterojunction photocatalysts based on 2D materials: the role of configuration. Adv. Sustainable Syst. 2020, 4 (9), 200013010.1002/adsu.202000130. DOI
Zhang Z.; Yates J. T. Jr Band bending in semiconductors: chemical and physical consequences at surfaces and interfaces. Chem. Rev. 2012, 112 (10), 5520–5551. 10.1021/cr3000626. PubMed DOI
Wang H.; Zhang L.; Chen Z.; Hu J.; Li S.; Wang Z.; Liu J.; Wang X. Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances. Chem. Soc. Rev. 2014, 43 (15), 5234–5244. 10.1039/C4CS00126E. PubMed DOI
Naguib M.; Barsoum M. W.; Gogotsi Y. Ten years of progress in the synthesis and development of MXenes. Adv. Mater. 2021, 33 (39), 210339310.1002/adma.202103393. PubMed DOI
Naguib M.; Kurtoglu M.; Presser V.; Lu J.; Niu J.; Heon M.; Hultman L.; Gogotsi Y.; Barsoum M. W. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 2011, 23 (37), 4248–4253. 10.1002/adma.201102306. PubMed DOI
Sherryna A.; Tahir M. Role of surface morphology and terminating groups in titanium carbide MXenes (Ti3C2Tx) cocatalysts with engineering aspects for modulating solar hydrogen production: A critical review. Chem. Eng. J. 2022, 433, 13457310.1016/j.cej.2022.134573. DOI
Wang Y.; Chen J.; Que M.; Wu Q.; Wang X.; Zhou Y.; Ma Y.; Li Y.; Yang X. MXene-derived Ti3C2Tx/Bi4Ti3O12 heterojunction photocatalyst for enhanced degradation of tetracycline hydrochloride, rhodamine B, and methyl orange under visible-light irradiation. Appl. Surf. Sci. 2023, 639, 15827010.1016/j.apsusc.2023.158270. DOI
Das Chakraborty S.; Kumar U.; Bhattacharya P.; Mishra T. Tailoring of Visible to Near-Infrared Active 2D MXene with Defect-Enriched Titania-Based Heterojunction Photocatalyst for Green H2 Generation. ACS Appl. Mater. Interfaces 2024, 16 (2), 2204–2215. 10.1021/acsami.3c13075. PubMed DOI
Zhang Q.; Teng J.; Zou G.; Peng Q.; Du Q.; Jiao T.; Xiang J. Efficient phosphate sequestration for water purification by unique sandwich-like MXene/magnetic iron oxide nanocomposites. Nanoscale 2016, 8 (13), 7085–7093. 10.1039/C5NR09303A. PubMed DOI
Ahmed B.; Anjum D. H.; Hedhili M. N.; Gogotsi Y.; Alshareef H. N. H2O2 assisted room temperature oxidation of Ti2C MXene for Li-ion battery anodes. Nanoscale 2016, 8 (14), 7580–7587. 10.1039/C6NR00002A. PubMed DOI
Zheng T.; Wang W.; Du Q.; Wan X.; Jiang Y.; Yu P. 2D Ti3C2-MXene Nanosheets/ZnO Nanorods for UV Photodetectors. ACS Appl. Nano Mater. 2024, 7, 3050–3058. 10.1021/acsanm.3c05385. DOI
Shah N.; Wang X.; Tian J. Recent advances in MXenes: a promising 2D material for photocatalysis. Mater. Chem. Front. 2023, 7 (19), 4184–4201. 10.1039/D3QM00216K. DOI
Sun B.; Lu S.; Qian Y.; Zhang X.; Tian J. Recent progress in research and design concepts for the characterization, testing, and photocatalysts for nitrogen reduction reaction. Carbon Energy 2023, 5 (3), e30510.1002/cey2.305. DOI
Fang B.; Xing Z.; Sun D.; Li Z.; Zhou W. Hollow semiconductor photocatalysts for solar energy conversion. Adv. Powder Mater. 2022, 1 (2), 10002110.1016/j.apmate.2021.11.008. DOI
Jia G.; Wang Y.; Cui X.; Zheng W. Highly carbon-doped TiO2 derived from MXene boosting the photocatalytic hydrogen evolution. ACS Sustainable Chem. Eng. 2018, 6 (10), 13480–13486. 10.1021/acssuschemeng.8b03406. DOI
Naguib M.; Mashtalir O.; Lukatskaya M. R.; Dyatkin B.; Zhang C.; Presser V.; Gogotsi Y.; Barsoum M. W. One-step synthesis of nanocrystalline transition metal oxides on thin sheets of disordered graphitic carbon by oxidation of MXenes. ChemComm 2014, 50 (56), 7420–7423. 10.1039/C4CC01646G. PubMed DOI
Tang T.; Wang Z.; Guan J. Electronic structure regulation of single-site MNC electrocatalysts for carbon dioxide reduction. Acta Phys.-Chim. Sin. 2022, 39, 220803310.3866/pku.whxb202208033. DOI
Husmann S.; Besch M.; Ying B.; Tabassum A.; Naguib M.; Presser V. Layered titanium niobium oxides derived from solid-solution Ti-Nb carbides (MXene) as anode materials for Li-ion batteries. ACS Appl. Energy Mater. 2022, 5 (7), 8132–8142. 10.1021/acsaem.2c00676. DOI
Kajbafvala A.; Ghorbani H.; Paravar A.; Samberg J. P.; Kajbafvala E.; Sadrnezhaad S. K. Effects of morphology on photocatalytic performance of Zinc oxide nanostructures synthesized by rapid microwave irradiation methods. Superlattices Microstruct. 2012, 51 (4), 512–522. 10.1016/j.spmi.2012.01.015. DOI
Ouyang S.; Li Z.; Ouyang Z.; Yu T.; Ye J.; Zou Z. Correlation of crystal structures, electronic structures, and photocatalytic properties in a series of Ag-based oxides: AgAlO2, AgCrO2, and Ag2CrO4. J. Phys. Chem., C 2008, 112 (8), 3134–3141. 10.1021/jp077127w. DOI
Wang H. Y.; Chen J.; Xiao F. X.; Zheng J.; Liu B. Doping-induced structural evolution from rutile to anatase: formation of Nb-doped anatase TiO2 nanosheets with high photocatalytic activity. J. Mater. Chem., A 2016, 4 (18), 6926–6932. 10.1039/C5TA08202A. DOI
Xie M.; Zhu H.; Fang M.; Huang Z.; Liu Y. G.; Wu X. Band-gap engineering and comparative investigation of Ti2Nb10O29 photocatalysts obtained by various synthetic routes. Appl. Surf. Sci. 2018, 435, 39–47. 10.1016/j.apsusc.2017.11.081. DOI
Adhami T.; Ebrahimi-Kahrizsangi R.; Bakhsheshi-Rad H. R.; Majidi S.; Ghorbanzadeh M.; Berto F. Synthesis and electrochemical properties of TiNb2O7 and Ti2Nb10O29 anodes under various annealing atmospheres. Metals 2021, 11 (6), 98310.3390/met11060983. DOI
Fatima M.; Fatheema J.; Monir N. B.; Siddique A. H.; Khan B.; Islam A.; Akinwande D.; Rizwan S. Nb-doped MXene with enhanced energy storage capacity and stability. Front. Chem. 2020, 8, 16810.3389/fchem.2020.00168. PubMed DOI PMC
Jia D.; Monfort O.; Hanna K.; Mailhot G.; Brigante M. Caffeine degradation using peroxydisulfate and peroxymonosulfate in the presence of Mn2O3. Efficiency, reactive species formation, and application in sewage treatment plant water. J. Clean. Prod. 2021, 328, 12965210.1016/j.jclepro.2021.129652. DOI
Marion A.; Brigante M.; Mailhot G. A new source of ammonia and carboxylic acids in cloud water: The first evidence of photochemical process involving an iron-amino acid complex. Atmos. Environ. 2018, 195, 179–186. 10.1016/j.atmosenv.2018.09.060. DOI
Larson A. C.; Von Dreele R. B.. General Structure Analysis System (GSAS); Los Alamos National Laboratory, 2004.
Toby B. H. EXPGUI, a graphical user interface for GSAS. J. Appl. Crystallogr. 2001, 34 (2), 210–213. 10.1107/S0021889801002242. DOI
Fairley N.; Fernandez V.; Richard-Plouet M.; Richard-Plouet M.; Guillot-Deudon C.; Walton J.; Smith E.; Flahaut D.; Greiner M.; Biesinger M.; Tougaard S.; Morgan D. Systematic and collaborative approach to problem-solving using X-ray photoelectron spectroscopy. Appl. Surf. Sci. Adv. 2021, 5, 10011210.1016/j.apsadv.2021.100112. DOI
Biesinger M. C. Accessing the robustness of adventitious carbon for charge referencing (correction) purposes in XPS analysis: Insights from a multi-user facility data review. Appl. Surf. Sci. 2022, 597, 15368110.1016/j.apsusc.2022.153681. DOI
Biesinger M. C.; Lau L. W.; Gerson A. R.; Smart R. S. C. Resolving surface chemical states in XPS analysis of first-row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn. Appl. Surf. Sci. 2010, 257 (3), 887–898. 10.1016/j.apsusc.2010.07.086. DOI
Naumkin A. V.; Kraut-Vass A.; Gaarenstroom S. W.; Powell C. J.. NIST X-ray Photoelectron Spectroscopy Database, NIST Stand. Ref. Database 2000; Vol. 20.
Makuła P.; Pacia M.; Macyk W. How to correctly determine the band gap energy of modified semiconductor photocatalysts based on UV-Vis spectra. J. Phys. Chem. Lett. 2018, 9 (23), 6814–6817. 10.1021/acs.jpclett.8b02892. PubMed DOI
Hug G.; Jaouen M.; Barsoum M. W. X-ray absorption spectroscopy, EELS, and full-potential augmented plane wave study of the electronic structure of Ti2AlC, Ti2AlN, Nb2AlC, and (Ti 0.5Nb0.5)2AlC. Phys. Rev., B 2005, 71 (2), 02410510.1103/PhysRevB.71.024105. DOI
Damptey L.; Jaato B. N.; Ribeiro C. S.; Varagnolo S.; Power N. P.; Selvaraj V.; Dodoo-Arhin D.; Kumar R. V.; Sreenilayam S. P.; Brabazon D.; Thakur V. K. Surface functionalized MXenes for wastewater treatment-a comprehensive review. Global Challenges 2022, 6 (6), 210012010.1002/gch2.202100120. PubMed DOI PMC
Lotfi R.; Naguib M.; Yilmaz D. E.; Nanda J.; Van Duin A. C. A comparative study on the oxidation of two-dimensional Ti3C2 MXene structures in different environments. J. Mater. Chem., A 2018, 6 (26), 12733–12743. 10.1039/C8TA01468J. DOI
Atri S.; Malik V.; Uma S.; Nagarajan R. Catalytic applications of mesoporous CaBi2O4 obtained from a single source precursor. Res. Chem. Intermed. 2019, 45, 2457–2470. 10.1007/s11164-019-03746-y. DOI
Lian Y.; Zheng Y.; Wang Z.; Hu Y.; Zhao J.; Zhang H. Hollow ppy@ Ti2Nb10O29-x@ NC bowls: a stress–release structure with vacancy defects and coating interface for Li capacitor. Chem. Eng. J. 2023, 454, 14028710.1016/j.cej.2022.140287. DOI
Zhang Y.; Harris C. X.; Wallenmeyer P.; Murowchick J.; Chen X. Asymmetric lattice vibrational characteristics of rutile TiO2 as revealed by laser power dependent Raman spectroscopy. J. Phys. Chem., C 2013, 117 (45), 24015–24022. 10.1021/jp406948e. DOI
Lou S.; Cheng X.; Gao J.; Li Q.; Wang L.; Cao Y.; Ma Y.; Zuo P.; Gao Y.; Du C.; Huo H.; Yin G. Pseudocapacitive Li+ intercalation in porous Ti2Nb10O29 nanospheres enables ultra-fast lithium storage. Energy Storage Mater. 2018, 11, 57–66. 10.1016/j.ensm.2017.09.012. DOI
Djokić V. R.; Marinkovicc A. D.; Petrovicc R. D.; Ersen O.; Zafeiratos S.; Mitricc M.; Ophus C.; Radmilovicc V. R.; Janaćkovicc D. T. Highly active rutile TiO2 nanocrystalline photocatalysts. ACS Appl. Mater. Interfaces 2020, 12 (29), 33058–33068. 10.1021/acsami.0c03150. PubMed DOI
Badovinac I. J.; Peter R.; Omerzu A.; Salamon K.; Saric I.; Samarzija A.; Percic M.; Piltaver I. K.; Ambrozic G.; Petravic M. Grain size effect on photocatalytic activity of TiO2 thin films grown by atomic layer deposition. Thin Solid Films 2020, 709, 13821510.1016/j.tsf.2020.138215. DOI
Liu H.; Zhao T.; Kong L.; Cao X.; Zhu W.; Huang Y.; Bo M. Twinning enhanced electrical conductivity and surface activity of nanostructured CuCrO2 gas sensor. Sen. Actuators, B 2021, 338, 12984510.1016/j.snb.2021.129845. DOI
Wang X.; Yu J. C.; Ho C.; Hou Y.; Fu X. Photocatalytic activity of a hierarchically macro/mesoporous titania. Langmuir 2005, 21 (6), 2552–2559. 10.1021/la047979c. PubMed DOI
Brunauer S.; Emmett P. H.; Teller E. Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 1938, 60 (2), 309–319. 10.1021/ja01269a023. DOI
Cha B. J.; Saqlain S.; Seo H. O.; Kim Y. D. Hydrophilic surface modification of TiO2 to produce a highly sustainable photocatalyst for outdoor air purification. Appl. Surf. Sci. 2019, 479, 31–38. 10.1016/j.apsusc.2019.01.261. DOI
Aperador W.; Yate L.; Pinzon M. J.; Caicedo J. C. Optical and semiconductive properties of binary and ternary thin films from the Nb-Ti-O system. Results Phys. 2018, 9, 328–336. 10.1016/j.rinp.2018.02.060. DOI
Zhang H.; Cai J.; Wang Y.; Wu M.; Meng M.; Tian Y.; Li X.; Zhang J.; Zheng L.; Jiang Z.; Gong J. Insights into the effects of surface/bulk defects on photocatalytic hydrogen evolution over TiO2 with exposed {001} facets. Appl. Catal., B 2018, 220, 126–136. 10.1016/j.apcatb.2017.08.046. DOI
Yan J.; Wu G.; Guan N.; Li L.; Li Z.; Cao X. Understanding the effect of surface/bulk defects on the photocatalytic activity of TiO2: anatase versus rutile. Phys. Chem. Chem. Phys. 2013, 15 (26), 10978–10988. 10.1039/c3cp50927c. PubMed DOI
Das P.; Sengupta D.; Kasinadhuni U.; Mondal B.; Mukherjee K. Nano-crystalline thin and nano-particulate thick TiO2 layer: Cost-effective sequential deposition and study on dye-sensitized solar cell characteristics. Mater. Res. Bull. 2015, 66, 32–38. 10.1016/j.materresbull.2015.02.018. DOI
Gao C.; Wei T.; Zhang Y.; Song X.; Huan Y.; Liu H.; Zhao M.; Yu J.; Chen X. A photoresponsive rutile TiO2 heterojunction with enhanced Electron–Hole separation for high-performance hydrogen evolution. Adv. Mater. 2019, 31 (8), 180659610.1002/adma.201806596. PubMed DOI
Lin C.; Yu S.; Zhao H.; Wu S.; Wang G.; Yu L.; Li Y.; Zhu Z. Z.; Li J.; Lin S. Defective Ti2Nb10O27. 1: an advanced anode material for lithium-ion batteries. Sci. Rep. 2015, 5 (1), 1783610.1038/srep17836. PubMed DOI PMC
Zhu H. X.; Zhou P. X.; Li X.; Liu J. M. Electronic structures and optical properties of rutile TiO2 with different point defects from DFT+ U calculations. Phys. Lett., A 2014, 378 (36), 2719–2724. 10.1016/j.physleta.2014.07.029. DOI
Rajput R. B.; Kale R. B. Photocatalytic activity of solvothermally synthesized rutile TiO2 nanorods for the removal of water contaminants. Mater. Sci. Eng., B 2023, 294, 11655610.1016/j.mseb.2023.116556. DOI
Fujishima A.; Zhang X.; Tryk D. A. TiO2 photocatalysis and related surface phenomena. Surf. Sci. Rep. 2008, 63 (12), 515–582. 10.1016/j.surfrep.2008.10.001. DOI
Hirakawa T.; Nosaka Y. Properties of O2•– and •OH formed in TiO2 aqueous suspensions by photocatalytic reaction and the influence of H2O2 and some ions. Langmuir 2002, 18 (8), 3247–3254. 10.1021/la015685a. DOI
Xiao Y.; Carena L.; Nasi M. T.; Vahatalo A. V. Superoxide-driven autocatalytic dark production of hydroxyl radicals in the presence of complexes of natural dissolved organic matter and iron. Water Res. 2020, 177, 11578210.1016/j.watres.2020.115782. PubMed DOI
Lin Y. T.; Weng C. H.; Lin Y. H.; Shiesh C. C.; Chen F. Y. Effect of C content and calcination temperature on the photocatalytic activity of C-doped TiO2 catalyst. Sep. Purific. Technol. 2013, 116, 114–123. 10.1016/j.seppur.2013.05.018. DOI