MXene-Derived Oxide Nanoheterostructures for Photocatalytic Sulfamethoxazole Degradation

. 2024 Jul 26 ; 7 (14) : 16506-16515. [epub] 20240718

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39086512

Herein, we report for the first time the use of ternary oxide nanoheterostructure photocatalysts derived from (Nb y , Ti1-y )2CT x MXene in the treatment of water. Three different compositions of binary MXenes, viz., (Ti0.75Nb0.25)2CT x , (Ti0.5Nb0.5)2CT x , and (Ti0.25Nb0.75)2CT x (with T x = OH, F, and Cl), were used as single-source precursor to produce TiNbO x -3:1, TiNbO x -1:1, and TiNbO x -1:3 by controlled-atmosphere thermal oxidation. Phase identification and Le Bail refinements confirmed the presence of a mixture of rutile TiO2 and monoclinic Ti2Nb10O29. Morphological investigations through scanning and transmission electron microscopies revealed the retention of layered nanostructures from the MXene precursors and the fusion of TiO2 and Ti2Nb10O29 nanoparticles in forming nanosheets. Among the three oxide nanoheterostructures, TiNbO x -3:1 exhibited the best photocatalytic performance by the removal of 83% of sulfamethoxazole (SMX) after 2 h of reaction. Such a result is explained by a complex influence of structural, morphological, and electronic properties since TiNbO x -3:1 consisted of small-sized crystallites (40-70 nm) and possessed a higher surface area. The suggested electronic band structure is a type-II heterojunction, where the recombination of electrons and holes is minimized during photocatalytic reactions. The photocatalytic degradation of SMX was promoted by the attack of •OH, as evidenced by the detection of 2.2 μM •OH, using coumarin as a probe. This study highlights the potential application of MXene-derived oxide nanoheterostructures in wastewater treatment.

Zobrazit více v PubMed

Wang H. J.; Li X.; Zhao X. X.; Li C. Y.; Song X. H.; Zhang P.; Huo P. W.; Li X. Research progress on semiconductor photocatalysts and their modification strategies for environmental remediation. Chin. J. Catal. 2022, 43 (2), 178–214. 10.1016/S1872-2067(21)63910-4. DOI

Guo Z.; Zhou J.; Zhu L.; Sun Z. MXene: a promising photocatalyst for water splitting. J. Mater. Chem., A 2016, 4 (29), 11446–11452. 10.1039/C6TA04414J. DOI

Shen R.; Xie J.; Xiang Q.; Chen X.; Jiang J.; Li X. Ni-based photocatalytic H2-production cocatalysts2. Chin. J. Catal. 2019, 40 (3), 240–288. 10.1016/S1872-2067(19)63294-8. DOI

Zhao Y.; Li Z.; Li M.; Liu J.; Liu X.; Waterhouse G. I.; Wang Y.; Zhao J.; Gao W.; Zhang Z.; Long R.; et al. Reductive transformation of layered-double-hydroxide nanosheets to Fe-based heterostructures for efficient visible-light photocatalytic hydrogenation of CO. Adv. Mater. 2018, 30 (36), 180312710.1002/adma.201803127. PubMed DOI

Li X.; Yu J.; Jaroniec M.; Chen X. Cocatalysts for selective photoreduction of CO2 into solar fuels. Chem. Rev. 2019, 119 (6), 3962–4179. 10.1021/acs.chemrev.8b00400. PubMed DOI

Fan Y.; Ma W.; Han D.; Gan S.; Dong X.; Niu L. Convenient recycling of 3D AgX/graphene aerogels (X = Br, Cl) for efficient photocatalytic degradation of water pollutants. Adv. Mater. 2015, 27 (25), 3767–3773. 10.1002/adma.201500391. PubMed DOI

Khaki M. R. D.; Shafeeyan M. S.; Raman A. A. A.; Daud W. M. A. W. Application of doped photocatalysts for organic pollutant degradation-A review. J. Environ. Manage. 2017, 198, 78–94. 10.1016/j.jenvman.2017.04.099. PubMed DOI

Nikokavoura A.; Trapalis C. Alternative photocatalysts to TiO2 for the photocatalytic reduction of CO2. Appl. Surf. Sci. 2017, 391, 149–174. 10.1016/j.apsusc.2016.06.172. DOI

Karkman A.; Do T. T.; Walsh F.; Virta M. P. Antibiotic-resistance genes in wastewater. Trends Microbiol. 2018, 26 (3), 220–228. 10.1016/j.tim.2017.09.005. PubMed DOI

Wu Z.; Song W.; Xu X.; Yuan J.; Lv W.; Yao Y. High 1T phase and sulfur vacancies in C-MoS2@ Fe induced by ascorbic acid for synergistically enhanced contaminants degradation. Sep. Purif. Technol. 2022, 286, 12051110.1016/j.seppur.2022.120511. DOI

Fujishima A.; Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238 (5358), 37–38. 10.1038/238037a0. PubMed DOI

Chen X.; Mao S. S. Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem. Rev. 2007, 107 (7), 2891–2959. 10.1021/cr0500535. PubMed DOI

Wang Y.; Ding Z.; Arif N.; Jiang W. C.; Zeng Y. J. 2D material based heterostructures for solar light-driven photocatalytic H2 production. Mater. Adv. 2022, 3 (8), 3389–3417. 10.1039/D2MA00191H. DOI

Su Q.; Li Y.; Hu R.; Song F.; Liu S.; Guo C.; Zhu S.; Liu W.; Pan J. Heterojunction photocatalysts based on 2D materials: the role of configuration. Adv. Sustainable Syst. 2020, 4 (9), 200013010.1002/adsu.202000130. DOI

Zhang Z.; Yates J. T. Jr Band bending in semiconductors: chemical and physical consequences at surfaces and interfaces. Chem. Rev. 2012, 112 (10), 5520–5551. 10.1021/cr3000626. PubMed DOI

Wang H.; Zhang L.; Chen Z.; Hu J.; Li S.; Wang Z.; Liu J.; Wang X. Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances. Chem. Soc. Rev. 2014, 43 (15), 5234–5244. 10.1039/C4CS00126E. PubMed DOI

Naguib M.; Barsoum M. W.; Gogotsi Y. Ten years of progress in the synthesis and development of MXenes. Adv. Mater. 2021, 33 (39), 210339310.1002/adma.202103393. PubMed DOI

Naguib M.; Kurtoglu M.; Presser V.; Lu J.; Niu J.; Heon M.; Hultman L.; Gogotsi Y.; Barsoum M. W. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 2011, 23 (37), 4248–4253. 10.1002/adma.201102306. PubMed DOI

Sherryna A.; Tahir M. Role of surface morphology and terminating groups in titanium carbide MXenes (Ti3C2Tx) cocatalysts with engineering aspects for modulating solar hydrogen production: A critical review. Chem. Eng. J. 2022, 433, 13457310.1016/j.cej.2022.134573. DOI

Wang Y.; Chen J.; Que M.; Wu Q.; Wang X.; Zhou Y.; Ma Y.; Li Y.; Yang X. MXene-derived Ti3C2Tx/Bi4Ti3O12 heterojunction photocatalyst for enhanced degradation of tetracycline hydrochloride, rhodamine B, and methyl orange under visible-light irradiation. Appl. Surf. Sci. 2023, 639, 15827010.1016/j.apsusc.2023.158270. DOI

Das Chakraborty S.; Kumar U.; Bhattacharya P.; Mishra T. Tailoring of Visible to Near-Infrared Active 2D MXene with Defect-Enriched Titania-Based Heterojunction Photocatalyst for Green H2 Generation. ACS Appl. Mater. Interfaces 2024, 16 (2), 2204–2215. 10.1021/acsami.3c13075. PubMed DOI

Zhang Q.; Teng J.; Zou G.; Peng Q.; Du Q.; Jiao T.; Xiang J. Efficient phosphate sequestration for water purification by unique sandwich-like MXene/magnetic iron oxide nanocomposites. Nanoscale 2016, 8 (13), 7085–7093. 10.1039/C5NR09303A. PubMed DOI

Ahmed B.; Anjum D. H.; Hedhili M. N.; Gogotsi Y.; Alshareef H. N. H2O2 assisted room temperature oxidation of Ti2C MXene for Li-ion battery anodes. Nanoscale 2016, 8 (14), 7580–7587. 10.1039/C6NR00002A. PubMed DOI

Zheng T.; Wang W.; Du Q.; Wan X.; Jiang Y.; Yu P. 2D Ti3C2-MXene Nanosheets/ZnO Nanorods for UV Photodetectors. ACS Appl. Nano Mater. 2024, 7, 3050–3058. 10.1021/acsanm.3c05385. DOI

Shah N.; Wang X.; Tian J. Recent advances in MXenes: a promising 2D material for photocatalysis. Mater. Chem. Front. 2023, 7 (19), 4184–4201. 10.1039/D3QM00216K. DOI

Sun B.; Lu S.; Qian Y.; Zhang X.; Tian J. Recent progress in research and design concepts for the characterization, testing, and photocatalysts for nitrogen reduction reaction. Carbon Energy 2023, 5 (3), e30510.1002/cey2.305. DOI

Fang B.; Xing Z.; Sun D.; Li Z.; Zhou W. Hollow semiconductor photocatalysts for solar energy conversion. Adv. Powder Mater. 2022, 1 (2), 10002110.1016/j.apmate.2021.11.008. DOI

Jia G.; Wang Y.; Cui X.; Zheng W. Highly carbon-doped TiO2 derived from MXene boosting the photocatalytic hydrogen evolution. ACS Sustainable Chem. Eng. 2018, 6 (10), 13480–13486. 10.1021/acssuschemeng.8b03406. DOI

Naguib M.; Mashtalir O.; Lukatskaya M. R.; Dyatkin B.; Zhang C.; Presser V.; Gogotsi Y.; Barsoum M. W. One-step synthesis of nanocrystalline transition metal oxides on thin sheets of disordered graphitic carbon by oxidation of MXenes. ChemComm 2014, 50 (56), 7420–7423. 10.1039/C4CC01646G. PubMed DOI

Tang T.; Wang Z.; Guan J. Electronic structure regulation of single-site MNC electrocatalysts for carbon dioxide reduction. Acta Phys.-Chim. Sin. 2022, 39, 220803310.3866/pku.whxb202208033. DOI

Husmann S.; Besch M.; Ying B.; Tabassum A.; Naguib M.; Presser V. Layered titanium niobium oxides derived from solid-solution Ti-Nb carbides (MXene) as anode materials for Li-ion batteries. ACS Appl. Energy Mater. 2022, 5 (7), 8132–8142. 10.1021/acsaem.2c00676. DOI

Kajbafvala A.; Ghorbani H.; Paravar A.; Samberg J. P.; Kajbafvala E.; Sadrnezhaad S. K. Effects of morphology on photocatalytic performance of Zinc oxide nanostructures synthesized by rapid microwave irradiation methods. Superlattices Microstruct. 2012, 51 (4), 512–522. 10.1016/j.spmi.2012.01.015. DOI

Ouyang S.; Li Z.; Ouyang Z.; Yu T.; Ye J.; Zou Z. Correlation of crystal structures, electronic structures, and photocatalytic properties in a series of Ag-based oxides: AgAlO2, AgCrO2, and Ag2CrO4. J. Phys. Chem., C 2008, 112 (8), 3134–3141. 10.1021/jp077127w. DOI

Wang H. Y.; Chen J.; Xiao F. X.; Zheng J.; Liu B. Doping-induced structural evolution from rutile to anatase: formation of Nb-doped anatase TiO2 nanosheets with high photocatalytic activity. J. Mater. Chem., A 2016, 4 (18), 6926–6932. 10.1039/C5TA08202A. DOI

Xie M.; Zhu H.; Fang M.; Huang Z.; Liu Y. G.; Wu X. Band-gap engineering and comparative investigation of Ti2Nb10O29 photocatalysts obtained by various synthetic routes. Appl. Surf. Sci. 2018, 435, 39–47. 10.1016/j.apsusc.2017.11.081. DOI

Adhami T.; Ebrahimi-Kahrizsangi R.; Bakhsheshi-Rad H. R.; Majidi S.; Ghorbanzadeh M.; Berto F. Synthesis and electrochemical properties of TiNb2O7 and Ti2Nb10O29 anodes under various annealing atmospheres. Metals 2021, 11 (6), 98310.3390/met11060983. DOI

Fatima M.; Fatheema J.; Monir N. B.; Siddique A. H.; Khan B.; Islam A.; Akinwande D.; Rizwan S. Nb-doped MXene with enhanced energy storage capacity and stability. Front. Chem. 2020, 8, 16810.3389/fchem.2020.00168. PubMed DOI PMC

Jia D.; Monfort O.; Hanna K.; Mailhot G.; Brigante M. Caffeine degradation using peroxydisulfate and peroxymonosulfate in the presence of Mn2O3. Efficiency, reactive species formation, and application in sewage treatment plant water. J. Clean. Prod. 2021, 328, 12965210.1016/j.jclepro.2021.129652. DOI

Marion A.; Brigante M.; Mailhot G. A new source of ammonia and carboxylic acids in cloud water: The first evidence of photochemical process involving an iron-amino acid complex. Atmos. Environ. 2018, 195, 179–186. 10.1016/j.atmosenv.2018.09.060. DOI

Larson A. C.; Von Dreele R. B.. General Structure Analysis System (GSAS); Los Alamos National Laboratory, 2004.

Toby B. H. EXPGUI, a graphical user interface for GSAS. J. Appl. Crystallogr. 2001, 34 (2), 210–213. 10.1107/S0021889801002242. DOI

Fairley N.; Fernandez V.; Richard-Plouet M.; Richard-Plouet M.; Guillot-Deudon C.; Walton J.; Smith E.; Flahaut D.; Greiner M.; Biesinger M.; Tougaard S.; Morgan D. Systematic and collaborative approach to problem-solving using X-ray photoelectron spectroscopy. Appl. Surf. Sci. Adv. 2021, 5, 10011210.1016/j.apsadv.2021.100112. DOI

Biesinger M. C. Accessing the robustness of adventitious carbon for charge referencing (correction) purposes in XPS analysis: Insights from a multi-user facility data review. Appl. Surf. Sci. 2022, 597, 15368110.1016/j.apsusc.2022.153681. DOI

Biesinger M. C.; Lau L. W.; Gerson A. R.; Smart R. S. C. Resolving surface chemical states in XPS analysis of first-row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn. Appl. Surf. Sci. 2010, 257 (3), 887–898. 10.1016/j.apsusc.2010.07.086. DOI

Naumkin A. V.; Kraut-Vass A.; Gaarenstroom S. W.; Powell C. J.. NIST X-ray Photoelectron Spectroscopy Database, NIST Stand. Ref. Database 2000; Vol. 20.

Makuła P.; Pacia M.; Macyk W. How to correctly determine the band gap energy of modified semiconductor photocatalysts based on UV-Vis spectra. J. Phys. Chem. Lett. 2018, 9 (23), 6814–6817. 10.1021/acs.jpclett.8b02892. PubMed DOI

Hug G.; Jaouen M.; Barsoum M. W. X-ray absorption spectroscopy, EELS, and full-potential augmented plane wave study of the electronic structure of Ti2AlC, Ti2AlN, Nb2AlC, and (Ti 0.5Nb0.5)2AlC. Phys. Rev., B 2005, 71 (2), 02410510.1103/PhysRevB.71.024105. DOI

Damptey L.; Jaato B. N.; Ribeiro C. S.; Varagnolo S.; Power N. P.; Selvaraj V.; Dodoo-Arhin D.; Kumar R. V.; Sreenilayam S. P.; Brabazon D.; Thakur V. K. Surface functionalized MXenes for wastewater treatment-a comprehensive review. Global Challenges 2022, 6 (6), 210012010.1002/gch2.202100120. PubMed DOI PMC

Lotfi R.; Naguib M.; Yilmaz D. E.; Nanda J.; Van Duin A. C. A comparative study on the oxidation of two-dimensional Ti3C2 MXene structures in different environments. J. Mater. Chem., A 2018, 6 (26), 12733–12743. 10.1039/C8TA01468J. DOI

Atri S.; Malik V.; Uma S.; Nagarajan R. Catalytic applications of mesoporous CaBi2O4 obtained from a single source precursor. Res. Chem. Intermed. 2019, 45, 2457–2470. 10.1007/s11164-019-03746-y. DOI

Lian Y.; Zheng Y.; Wang Z.; Hu Y.; Zhao J.; Zhang H. Hollow ppy@ Ti2Nb10O29-x@ NC bowls: a stress–release structure with vacancy defects and coating interface for Li capacitor. Chem. Eng. J. 2023, 454, 14028710.1016/j.cej.2022.140287. DOI

Zhang Y.; Harris C. X.; Wallenmeyer P.; Murowchick J.; Chen X. Asymmetric lattice vibrational characteristics of rutile TiO2 as revealed by laser power dependent Raman spectroscopy. J. Phys. Chem., C 2013, 117 (45), 24015–24022. 10.1021/jp406948e. DOI

Lou S.; Cheng X.; Gao J.; Li Q.; Wang L.; Cao Y.; Ma Y.; Zuo P.; Gao Y.; Du C.; Huo H.; Yin G. Pseudocapacitive Li+ intercalation in porous Ti2Nb10O29 nanospheres enables ultra-fast lithium storage. Energy Storage Mater. 2018, 11, 57–66. 10.1016/j.ensm.2017.09.012. DOI

Djokić V. R.; Marinkovicc A. D.; Petrovicc R. D.; Ersen O.; Zafeiratos S.; Mitricc M.; Ophus C.; Radmilovicc V. R.; Janaćkovicc D. T. Highly active rutile TiO2 nanocrystalline photocatalysts. ACS Appl. Mater. Interfaces 2020, 12 (29), 33058–33068. 10.1021/acsami.0c03150. PubMed DOI

Badovinac I. J.; Peter R.; Omerzu A.; Salamon K.; Saric I.; Samarzija A.; Percic M.; Piltaver I. K.; Ambrozic G.; Petravic M. Grain size effect on photocatalytic activity of TiO2 thin films grown by atomic layer deposition. Thin Solid Films 2020, 709, 13821510.1016/j.tsf.2020.138215. DOI

Liu H.; Zhao T.; Kong L.; Cao X.; Zhu W.; Huang Y.; Bo M. Twinning enhanced electrical conductivity and surface activity of nanostructured CuCrO2 gas sensor. Sen. Actuators, B 2021, 338, 12984510.1016/j.snb.2021.129845. DOI

Wang X.; Yu J. C.; Ho C.; Hou Y.; Fu X. Photocatalytic activity of a hierarchically macro/mesoporous titania. Langmuir 2005, 21 (6), 2552–2559. 10.1021/la047979c. PubMed DOI

Brunauer S.; Emmett P. H.; Teller E. Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 1938, 60 (2), 309–319. 10.1021/ja01269a023. DOI

Cha B. J.; Saqlain S.; Seo H. O.; Kim Y. D. Hydrophilic surface modification of TiO2 to produce a highly sustainable photocatalyst for outdoor air purification. Appl. Surf. Sci. 2019, 479, 31–38. 10.1016/j.apsusc.2019.01.261. DOI

Aperador W.; Yate L.; Pinzon M. J.; Caicedo J. C. Optical and semiconductive properties of binary and ternary thin films from the Nb-Ti-O system. Results Phys. 2018, 9, 328–336. 10.1016/j.rinp.2018.02.060. DOI

Zhang H.; Cai J.; Wang Y.; Wu M.; Meng M.; Tian Y.; Li X.; Zhang J.; Zheng L.; Jiang Z.; Gong J. Insights into the effects of surface/bulk defects on photocatalytic hydrogen evolution over TiO2 with exposed {001} facets. Appl. Catal., B 2018, 220, 126–136. 10.1016/j.apcatb.2017.08.046. DOI

Yan J.; Wu G.; Guan N.; Li L.; Li Z.; Cao X. Understanding the effect of surface/bulk defects on the photocatalytic activity of TiO2: anatase versus rutile. Phys. Chem. Chem. Phys. 2013, 15 (26), 10978–10988. 10.1039/c3cp50927c. PubMed DOI

Das P.; Sengupta D.; Kasinadhuni U.; Mondal B.; Mukherjee K. Nano-crystalline thin and nano-particulate thick TiO2 layer: Cost-effective sequential deposition and study on dye-sensitized solar cell characteristics. Mater. Res. Bull. 2015, 66, 32–38. 10.1016/j.materresbull.2015.02.018. DOI

Gao C.; Wei T.; Zhang Y.; Song X.; Huan Y.; Liu H.; Zhao M.; Yu J.; Chen X. A photoresponsive rutile TiO2 heterojunction with enhanced Electron–Hole separation for high-performance hydrogen evolution. Adv. Mater. 2019, 31 (8), 180659610.1002/adma.201806596. PubMed DOI

Lin C.; Yu S.; Zhao H.; Wu S.; Wang G.; Yu L.; Li Y.; Zhu Z. Z.; Li J.; Lin S. Defective Ti2Nb10O27. 1: an advanced anode material for lithium-ion batteries. Sci. Rep. 2015, 5 (1), 1783610.1038/srep17836. PubMed DOI PMC

Zhu H. X.; Zhou P. X.; Li X.; Liu J. M. Electronic structures and optical properties of rutile TiO2 with different point defects from DFT+ U calculations. Phys. Lett., A 2014, 378 (36), 2719–2724. 10.1016/j.physleta.2014.07.029. DOI

Rajput R. B.; Kale R. B. Photocatalytic activity of solvothermally synthesized rutile TiO2 nanorods for the removal of water contaminants. Mater. Sci. Eng., B 2023, 294, 11655610.1016/j.mseb.2023.116556. DOI

Fujishima A.; Zhang X.; Tryk D. A. TiO2 photocatalysis and related surface phenomena. Surf. Sci. Rep. 2008, 63 (12), 515–582. 10.1016/j.surfrep.2008.10.001. DOI

Hirakawa T.; Nosaka Y. Properties of O2•– and •OH formed in TiO2 aqueous suspensions by photocatalytic reaction and the influence of H2O2 and some ions. Langmuir 2002, 18 (8), 3247–3254. 10.1021/la015685a. DOI

Xiao Y.; Carena L.; Nasi M. T.; Vahatalo A. V. Superoxide-driven autocatalytic dark production of hydroxyl radicals in the presence of complexes of natural dissolved organic matter and iron. Water Res. 2020, 177, 11578210.1016/j.watres.2020.115782. PubMed DOI

Lin Y. T.; Weng C. H.; Lin Y. H.; Shiesh C. C.; Chen F. Y. Effect of C content and calcination temperature on the photocatalytic activity of C-doped TiO2 catalyst. Sep. Purific. Technol. 2013, 116, 114–123. 10.1016/j.seppur.2013.05.018. DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...