Study of plasma activated water effect on heavy metal bioaccumulation by Cannabis sativa Using Laser-Induced Breakdown Spectroscopy
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články
PubMed
39094452
DOI
10.1016/j.ecoenv.2024.116807
PII: S0147-6513(24)00883-2
Knihovny.cz E-zdroje
- Klíčová slova
- Cadmium, Contamination, Lead, Non-thermal plasma, Phytoremediation, Toxic metals,
- MeSH
- bioakumulace * MeSH
- biodegradace * MeSH
- Cannabis * metabolismus MeSH
- kadmium * toxicita metabolismus MeSH
- kořeny rostlin metabolismus MeSH
- lasery * MeSH
- látky znečišťující půdu * toxicita metabolismus MeSH
- olovo * metabolismus toxicita MeSH
- plazmové plyny MeSH
- spektrální analýza metody MeSH
- těžké kovy * MeSH
- voda chemie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- kadmium * MeSH
- látky znečišťující půdu * MeSH
- olovo * MeSH
- plazmové plyny MeSH
- těžké kovy * MeSH
- voda MeSH
Contamination of the environment with toxic metals such as cadmium or lead is a worldwide issue. The accumulator of metals Cannabis sativa L. has potential to be utilized in phytoremediation, which is an environmentally friendly way of soil decontamination. Novel non-thermal plasma-based technologies may be a helpful tool in this process. Plasma activated water (PAW), prepared by contact of gaseous plasma with water, contains reactive oxygen and nitrogen species, which enhance the growth of plants. In this study, C. sativa was grown in a short-term toxicity test in a medium which consisted of plasma activated water prepared by dielectric barrier discharge with liquid electrode and different concentrations of cadmium or lead. Application of PAW on heavy metal contaminated C. sativa resulted in increased growth under Pb contamination as was determined by ecotoxicology tests. Furthermore, the PAW influence on the bioaccumulation of these metals as well as the influence on the nutrient composition of plants was studied primarily by applying Laser-induced breakdown spectroscopy (LIBS). The LIBS elemental maps show that C. sativa accumulates heavy metals mainly in the roots. The results present a new proof-of-concept in which PAW could be used to improve the growth of plants in heavy metal contaminated environment, while LIBS can be implemented to study the phytoremediation efficiency.
Department of Chemistry Faculty of Science Masaryk University Kamenice 5 Brno 625 00 Czech Republic
Faculty of Chemistry Brno University of Technology Purkyňova 118 464 Brno 612 00 Czech Republic
Citace poskytuje Crossref.org