Towards 3D determination of the surface roughness of core-shell microparticles as a routine quality control procedure by scanning electron microscopy
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
TF20
BAM's Focus Area Project "MamaLoCA - Modular, multiplexed, antibody-based lab-on-chip analyzer for food control"
PubMed
39095507
PubMed Central
PMC11297195
DOI
10.1038/s41598-024-68797-7
PII: 10.1038/s41598-024-68797-7
Knihovny.cz E-zdroje
- Klíčová slova
- Atomic force microscopy, Batch analysis, Core–shell particles, Image analysis, Roughness, Scanning electron microscopy, Tilting,
- Publikační typ
- časopisecké články MeSH
Recently, we have developed an algorithm to quantitatively evaluate the roughness of spherical microparticles using scanning electron microscopy (SEM) images. The algorithm calculates the root-mean-squared profile roughness (RMS-RQ) of a single particle by analyzing the particle's boundary. The information extracted from a single SEM image yields however only two-dimensional (2D) profile roughness data from the horizontal plane of a particle. The present study offers a practical procedure and the necessary software tools to gain quasi three-dimensional (3D) information from 2D particle contours recorded at different particle inclinations by tilting the sample (stage). This new approach was tested on a set of polystyrene core-iron oxide shell-silica shell particles as few micrometer-sized beads with different (tailored) surface roughness, providing the proof of principle that validates the applicability of the proposed method. SEM images of these particles were analyzed by the latest version of the developed algorithm, which allows to determine the analysis of particles in terms of roughness both within a batch and across the batches as a routine quality control procedure. A separate set of particles has been analyzed by atomic force microscopy (AFM) as a powerful complementary surface analysis technique integrated into SEM, and the roughness results have been compared.
Zobrazit více v PubMed
Chaudhuri, R. G. & Paria, S. Core/shell nanoparticles: Classes, properties, synthesis mechanisms, characterization, and applications. Chem. Rev.112, 2373–2433. 10.1021/cr100449n (2012). 10.1021/cr100449n PubMed DOI
Galogahi, F. M., Zhu, Y., An, H. J. & Nguyen, N. T. Core-shell microparticles: Generation approaches and applications. J. Sci. Adv. Mater. Dev.5, 417–435. 10.1016/j.jsamd.2020.09.001 (2020).10.1016/j.jsamd.2020.09.001 DOI
Jenjob, R., Phakkeeree, T. & Crespy, D. Core-shell particles for drug-delivery, bioimaging, sensing, and tissue engineering. Biomater. Sci.8, 2756–2770. 10.1039/c9bm01872g (2020). 10.1039/c9bm01872g PubMed DOI
Singh, R. & Bhateria, R. Core-shell nanostructures: A simplest two-component system with enhanced properties and multiple applications. Environ. Geochem. Health43, 2459–2482. 10.1007/s10653-020-00766-1 (2021). 10.1007/s10653-020-00766-1 PubMed DOI
Su, D. Advanced electron microscopy characterization of nanomaterials for catalysis. Green Energy Environ.2, 70. 10.1016/j.gee.2017.02.001 (2017).10.1016/j.gee.2017.02.001 DOI
Chen, H., Zhang, L., Li, M. & Xie, G. Synthesis of core–shell micro/nanoparticles and their tribological application: A review. Materials13, 4590. 10.3390/ma13204590 (2020). 10.3390/ma13204590 PubMed DOI PMC
Gumustas, M., Zalewski, P., Ozkan, S. A. & Uslu, B. The history of the core–shell particles and applications in active pharmaceutical ingredients via liquid chromatography. Chromatographia82, 17–48. 10.1007/s10337-018-3670-6 (2019).10.1007/s10337-018-3670-6 DOI
Duan, B. et al. The art of framework construction: Core-shell structured micro-energetic materials. Molecules26, 5650. 10.3390/molecules26185650 (2021). 10.3390/molecules26185650 PubMed DOI PMC
Hülagü, D. et al. Generalized analysis approach of the profile roughness by electron microscopy with the example of hierarchically grown polystyrene–iron oxide–silica core–shell–shell particles. Adv. Eng. Mater.24, 2101344. 10.1002/adem.202101344 (2022).10.1002/adem.202101344 DOI
Sarma, D., Gawlitza, K. & Rurack, K. Polystyrene core–silica shell particles with defined nanoarchitectures as a versatile platform for suspension array technology. Langmuir32, 3717. 10.1021/acs.langmuir.6b00373 (2016). 10.1021/acs.langmuir.6b00373 PubMed DOI
Chen, A., Ma, X., Cai, W. & Chen, Y. Polystyrene-supported dendritic mesoporous silica hybrid core/shell particles: Controlled synthesis and their pore size-dependent polishing behavior. J. Mater. Sci.55, 577–590. 10.1007/s10853-019-03960-4 (2020).10.1007/s10853-019-03960-4 DOI
Gao, D. G. et al. Synthesis of raspberry-like SiO2/polyacrylate nanocomposite latexes via a one-step miniemulsion polymerization and its film properties. J. Sol-Gel Sci. Technol.92, 695–705. 10.1007/s10971-019-05094-0 (2019).10.1007/s10971-019-05094-0 DOI
Grady, Z. A., Arthur, A. Z. & Wohl, C. J. Topological control of polystyrene-silica core-shell microspheres. Colloids Surf. A560, 136–140. 10.1016/j.colsurfa.2018.10.019 (2019).10.1016/j.colsurfa.2018.10.019 PubMed DOI PMC
Carl, P. et al. Wash-free multiplexed mix-and-read suspension array fluorescence immunoassay for anthropogenic markers in wastewater. Anal. Chem.91, 12988–12996. 10.1021/acs.analchem.9b03040 (2019). 10.1021/acs.analchem.9b03040 PubMed DOI
Climent, E. et al. Dip sticks embedding molecular beacon-functionalized core–mesoporous shell particles for the rapid on-site detection of microbiological fuel contamination. ACS Sens.6, 27–34. 10.1021/acssensors.0c01178 (2021). 10.1021/acssensors.0c01178 PubMed DOI
Sarma, D., Carl, P., Climent, E., Schneider, R. J. & Rurack, K. Multifunctional polystyrene core/silica shell microparticles with antifouling properties for bead-based multiplexed and quantitative analysis. ACS Appl. Mater. Interfaces11, 1321–1334. 10.1021/acsami.8b10306 (2019). 10.1021/acsami.8b10306 PubMed DOI
Tobias, C., Climent, E., Gawlitza, K. & Rurack, K. Polystyrene microparticles with convergently grown mesoporous silica shells as a promising tool for multiplexed bioanalytical assays. ACS Appl. Mater. Interfaces13, 207. 10.1021/acsami.0c17940 (2020). 10.1021/acsami.0c17940 PubMed DOI
Liu, J. Y., Jarzabek, J., Roberts, M., Majonis, D. & Winnik, M. A. A silica coating approach to enhance bioconjugation on metal-encoded polystyrene microbeads for bead-based assays in mass cytometry. Langmuir37, 8240–8252. 10.1021/acs.langmuir.1c00954 (2021). 10.1021/acs.langmuir.1c00954 PubMed DOI
Modena, M. M., Rühle, B., Burg, T. P. & Wuttke, S. Nanoparticle characterization: What to measure? Adv. Mater.31, 1901556. 10.1002/adma.201901556 (2019).10.1002/adma.201901556 PubMed DOI
Gosecka, M. & Gosecki, M. Characterization methods of polymer core-shell particles. Colloid Polym. Sci.293, 2719–2740. 10.1007/s00396-015-3728-z (2015).10.1007/s00396-015-3728-z DOI
Bushell, M. et al. Characterization of commercial metal oxide nanomaterials: Crystalline phase, particle size and specific surface area. Nanomaterials10, 1812. 10.3390/nano10091812 (2020). 10.3390/nano10091812 PubMed DOI PMC
Hodoroaba, V.-D. et al. Characterisation of nanoparticles by means of high-resolution sem/eds in transmission mode. IOP Conf. Ser. Mater. Sci. Eng.109, 012006. 10.1088/1757-899x/109/1/012006 (2016).10.1088/1757-899x/109/1/012006 DOI
Vladár, A. E. & Hodoroaba, V.-D. In Characterization of Nanoparticles (eds Hodoroaba, V.-D. et al.) 7–27 (Elsevier, 2020).
Yu, J., Liu, W. & Yu, H. A one-pot approach to hierarchically nanoporous titania hollow microspheres with high photocatalytic activity. Cryst. Growth Des.8, 930. 10.1021/cg700794y (2008).10.1021/cg700794y DOI
Mariano, S., Tacconi, S., Fidaleo, M., Rossi, M. & Dini, L. Micro and nanoplastics identification: Classic methods and innovative detection techniques. Front. Toxicol.3, 640. 10.3389/ftox.2021.636640 (2021).10.3389/ftox.2021.636640 PubMed DOI PMC
Hodoroaba, V.-D. In Characterization of Nanoparticles (eds Hodoroaba, V.-D. et al.) 397–417 (Elsevier, 2020).
Hodoroaba, V.-D., Motzkus, C., Macé, T. & Vaslin-Reimann, S. Performance of high-resolution sem/edx systems equipped with transmission mode (tsem) for imaging and measurement of size and size distribution of spherical nanoparticles. Microsc. Microanal.20, 1–11. 10.1017/S1431927614000014 (2014). 10.1017/S1431927614000014 PubMed DOI
Innocenzi, P., Malfatti, L., Marongiu, D. & Casula, M. F. Controlling shape and dimensions of pores in organic–inorganic films: Nanocubes and nanospheres. N. J. Chem.35, 1624–1629. 10.1039/C1NJ20186G (2011).10.1039/C1NJ20186G DOI
Cavarretta, I., Coop, M. & O’sllivan, C. The influence of particle characteristics on the behaviour of coarse grained soils. Géotechnique60, 413–423. 10.1680/geot.2010.60.6.413 (2010).10.1680/geot.2010.60.6.413 DOI
Hyslip, J. P. & Vallejo, L. E. Fractal analysis of the roughness and size distribution of granular materials. Eng. Geol.48, 231–244. 10.1016/S0013-7952(97)00046-X (1997).10.1016/S0013-7952(97)00046-X DOI
Yang, H., Baudet, B. A. & Yao, T. Characterization of the surface roughness of sand particles using an advanced fractal approach. Proc. R. Soc. A472, 1–20. 10.1098/rspa.2016.0524 (2016).10.1098/rspa.2016.0524 PubMed DOI PMC
Gjoennes, L. 4th International Conference on Aluminium Alloys 58–65.
Henao-Londoño, J. C., Riaño-Rojas, J. C., Gómez-Mendoza, J. B. & Restrepo-Parra, E. 3d stereo reconstruction of sem images. Mod. Appl. Sci.12, 57. 10.5539/mas.v12n12p57 (2018).10.5539/mas.v12n12p57 DOI
Gojani, A., Tobias, C., Hülagü, D., Rurack, K. & Hodoroaba, V.-D. Toward determination of the surface roughness of particles from a sem image. Microsc. Microanal.27, 3302–3305. 10.1017/S1431927621011375 (2021).10.1017/S1431927621011375 DOI
Tondare, V. N. A concept for three-dimensional particle metrology based on scanning electron microscopy and structure-from-motion photogrammetry. J. Res. Natl. Inst. Stand. Technol.125, 14. 10.6028/jres.125.014 (2020).10.6028/jres.125.014 PubMed DOI PMC
Töberg, S. & Reithmeier, E. Quantitative 3d reconstruction from scanning electron microscope images based on affine camera models. Sensors20, 598. 10.3390/s20123598 (2020). 10.3390/s20123598 PubMed DOI PMC
Dong, H. B., Jia, H. L., Qin, D. H. & Hu, D. W. Research on micro/nano scale 3d reconstruction based on scanning electron microscope. Front. Energy Res.11, 137. 10.3389/fenrg.2023.1333137 (2024).10.3389/fenrg.2023.1333137 DOI
Hu, M., Hsu, C.-P. & Isa, L. Particle surface roughness as a design tool for colloidal systems. Langmuir36, 11171. 10.1021/acs.langmuir.0c02050 (2020). 10.1021/acs.langmuir.0c02050 PubMed DOI
Li, X. & He, J. In situ assembly of raspberry- and mulberry-like silica nanospheres toward antireflective and antifogging coatings. ACS Appl. Mater. Interfaces4, 2204. 10.1021/am3002082 (2012). 10.1021/am3002082 PubMed DOI
Sarma, D. et al. Tsem-based contour analysis as a tool for the quantification of the profile roughness of silica shells on polystyrene core particles. Appl. Surf. Sci.426, 446. 10.1016/j.apsusc.2017.07.099 (2017).10.1016/j.apsusc.2017.07.099 DOI
Kudryavtsev, A. V., Dembélé, S. & Piat, N. International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS) 1–6.
Hülagü, D., Tobias, C., Gojani, A., Rurack, K. & Hodoroaba, V.-D. Analysis of the profile roughness of core-shell microparticles by electron microscopy. Microsc. Microanal.27, 2002–2004. 10.1017/S1431927621007285 (2021).10.1017/S1431927621007285 DOI
Github Repository for the Python Code.https://github.com/denizhulagu/roughness-analysis-by-electron-microscopy (2024).
Gwyddion Software. https://gwyddion.net/ (2024).
ImageJ Software. https://imagej.Nih.Gov/ij/ (2024).
Ridler, T. W. & Calvard, S. Picture thresholding using an iterative selection method. IEEE Trans. Syst. Man Cybern.8, 630. 10.1109/TSMC.1978.4310039 (1978).10.1109/TSMC.1978.4310039 DOI
Kontomaris, S. V., Stylianou, A., Chliveros, G. & Malamou, A. Overcoming challenges and limitations regarding the atomic force microscopy imaging and mechanical characterization of nanofibers. Fibers11, 83. 10.3390/fib11100083 (2023).10.3390/fib11100083 DOI