Innovative thermal management in the presence of ferromagnetic hybrid nanoparticles

. 2024 Aug 06 ; 14 (1) : 18203. [epub] 20240806

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39107337
Odkazy

PubMed 39107337
PubMed Central PMC11303709
DOI 10.1038/s41598-024-68830-9
PII: 10.1038/s41598-024-68830-9
Knihovny.cz E-zdroje

In the present work, a simple intelligence-based computation of artificial neural networks with the Levenberg-Marquardt backpropagation algorithm is developed to analyze the new ferromagnetic hybrid nanofluid flow model in the presence of a magnetic dipole within the context of flow over a stretching sheet. A combination of cobalt and iron (III) oxide (Co-Fe2O3) is strategically selected as ferromagnetic hybrid nanoparticles within the base fluid, water. The initial representation of the developed ferromagnetic hybrid nanofluid flow model, which is a system of highly nonlinear partial differential equations, is transformed into a system of nonlinear ordinary differential equations using appropriate similarity transformations. The reference data set of the possible outcomes is obtained from bvp4c for varying the parameters of the ferromagnetic hybrid nanofluid flow model. The estimated solutions of the proposed model are described during the testing, training, and validation phases of the backpropagated neural network. The performance evaluation and comparative study of the algorithm are carried out by regression analysis, error histograms, function fitting graphs, and mean squared error results. The findings of our study analyze the increasing effect of the ferrohydrodynamic interaction parameter β to enhance the temperature and velocity profiles, while increasing the thermal relaxation parameter α decreases the temperature profile. The performance on MSE was shown for the temperature and velocity profiles of the developed model about 9.1703e-10, 7.1313ee-10, 3.1462e-10, and 4.8747e-10. The accuracy of the artificial neural networks with the Levenberg-Marquardt algorithm method is confirmed through various analyses and comparative results with the reference data. The purpose of this study is to enhance understanding of ferromagnetic hybrid nanofluid flow models using artificial neural networks with the Levenberg-Marquardt algorithm, offering precise analysis of key parameter effects on temperature and velocity profiles. Future studies will provide novel soft computing methods that leverage artificial neural networks to effectively solve problems in fluid mechanics and expand to engineering applications, improving their usefulness in tackling real-world problems.

Zobrazit více v PubMed

Dongare, A. et al. Introduction to artificial neural network. Int. J. Eng. Innov. Technol.2(1), 189–194 (2012).

Nwadiugwu, M. C. Neural networks, artificial intelligence and the computational brain, arXiv preprint arXiv:2101.08635, (2020).

Pakdaman, M., Ahmadian, A., Effati, S., Salahshour, S. & Baleanu, D. Solving differential equations of fractional order using an optimization technique based on training artificial neural network. Appl. Math. Comput.293, 81–95 (2017).

Lagaris, I. E., Likas, A. & Fotiadis, D. I. Artificial neural networks for solving ordinary and partial differential equations. IEEE Trans. Neural Netw.9(5), 987–1000 (1998). 10.1109/72.712178 PubMed DOI

Li, A. et al. Integration of computational fluid dynamics and artificial neural network for optimization design of battery thermal management system. Batteries8(7), 69 (2022).10.3390/batteries8070069 DOI

Edwards, P. P. & Thomas, J. M. Gold in a metallic divided state-from faraday to present-day nanoscience. Angew. Chem. Int. Ed.46(29), 5480–5486 (2007).10.1002/anie.200700428 PubMed DOI

Akbari, B., Tavandashti, M. P. & Zandrahimi, M. Particle size characterization of nanoparticles-a practical approach. Iran. J. Mater. Sci. Eng.8(2), 48–56 (2011).

Dave, V. et al. Lipid-polymer hybrid nanoparticles: Synthesis strategies and biomedical applications. J. Microbiol. Methods160, 130–142 (2019). 10.1016/j.mimet.2019.03.017 PubMed DOI

Timofeeva, E. V., Moravek, M. R. & Singh, D. Improving the heat transfer efficiency of synthetic oil with silica nanoparticles. J. Colloid Interface Sci.364(1), 71–79 (2011). 10.1016/j.jcis.2011.08.004 PubMed DOI

Xie, H., Yu, W., Li, Y. & Chen, L. Discussion on the thermal conductivity enhancement of nanofluids. Nanoscale Res. Lett.6, 1–12 (2011).10.1186/1556-276X-6-124 PubMed DOI PMC

Sarkar, J., Ghosh, P. & Adil, A. A review on hybrid nanofluids: Recent research, development and applications. Renew. Sustain. Energy Rev.43, 164–177 (2015).10.1016/j.rser.2014.11.023 DOI

Minea, A. & Moldoveanu, M. Overview of hybrid nanofluids development and benefits. J. Eng. Thermophys.27, 507–514 (2018).10.1134/S1810232818040124 DOI

Şeşen, M., Tekşen, Y., Şendur, K., Mengüç, M. Pınar, Öztürk, H., Yağcı Acar, H. & Koşar, A. Heat transfer enhancement with actuation of magnetic nanoparticles suspended in a base fluid, J. Appl. Phys.112(6), (2012).

Sailor, M. J. & Park, J.-H. Hybrid nanoparticles for detection and treatment of cancer. Adv. Mater.24(28), 3779–3802 (2012). 10.1002/adma.201200653 PubMed DOI PMC

Naidu, K. K., Babu, H. D., Reddy, H. S. & Narayana, S. P. Magneto-stefan blow enhanced heat and mass transfer flow in non-newtonian ternary hybrid nanofluid across the nonlinear elongated surface, Numer. Heat Transf. Part B-Fund., (2024).

Naidu, K. K., Babu, D. H., Panyam, V. S. N., Reddy, S. H. & Chalapathi, T. Convective flow of prandtl hybrid nanofluid (swcnt-mwcnt/eg) over an exponentially elongated sheet with second-order slip, J. Porous Media, 25(12), (2022).

Babu, D. H., Naidu, K. K., Deo, S. & Narayana, P. S. Impacts of inclined lorentz forces on hybrid cnts over an exponentially stretching sheet with slip flow. Int. J. Model. Simul.43(3), 310–324 (2023).10.1080/02286203.2022.2079109 DOI

Babu, D. H., Venkateswarlu, B., Sarojamma, G. & Narayana, P. S. Coupled impression of radiative thermal flux and lorentz force on the water carrying composite nanoliquid streaming past an elastic sheet. J. Therm. Sci. Eng. Appl.14(9), 091002 (2022).10.1115/1.4053229 DOI

Naidu, K. K., Babu, D. H., Reddy, S. H. & Narayana, P. Radiation and partial slip effects on magnetohydrodynamic jeffrey nanofluid containing gyrotactic microorganisms over a stretching surface, J. Therm. Sci. Eng. Appl., 13(3), (2021).

Nasir, S., Berrouk, A. S. & Gul, T. Analysis of chemical reactive nanofluid flow on stretching surface using numerical soft computing approach for thermal enhancement. Eng. Appl. Comput. Fluid Mech.18(1), 2340609 (2024).

Nasir, S. et al. Heat transport study of ternary hybrid nanofluid flow under magnetic dipole together with nonlinear thermal radiation. Appl. Nanosci.12(9), 2777–2788 (2022).10.1007/s13204-022-02583-7 DOI

Nasir, S. & Berrouk, A. S. Comparative study of computational frameworks for magnetite and carbon nanotube-based nanofluids in enclosure, J. Therm. Anal. Calorim., 1–21, (2024).

Nasir, S., Berrouk, A. & Khan, Z. Efficiency assessment of thermal radiation utilizing flow of advanced nanocomposites on riga plate. Appl. Therm. Eng.242, 122531 (2024).10.1016/j.applthermaleng.2024.122531 DOI

Nasir, S. et al. Comparative analysis of the hydrothermal features of tio2 water and ethylene glycol-based nanofluid transportation over a radially stretchable disk. Numer. Heat Transf. Part B Fundam.83(5), 276–291 (2023).10.1080/10407790.2023.2173343 DOI

Nasir, S. & Berrouk, A. S. Numerical and intelligent neuro-computational modelling with fourier’s energy and fick’s mass flux theory of 3d fluid flow through a stretchable surface. Eng. Appl. Comput. Fluid Mech.17(1), 2270675 (2023).

Nasir, S., Berrouk, A. S., Gul, T. & Ali, A. Develop the artificial neural network approach to predict thermal transport analysis of nanofluid inside a porous enclosure. Sci. Rep.13(1), 21039 (2023). 10.1038/s41598-023-48412-x PubMed DOI PMC

Nasir, S., Berrouk, A. S., Gul, T. & Zari, I. Chemically radioactive unsteady nonlinear convective couple stress casson hybrid nanofluid flow over a gyrating sphere. J. Therm. Anal. Calorim.148(22), 12583–12595 (2023).10.1007/s10973-023-12608-0 DOI

Gul, T. et al. Simulation of the water-based hybrid nanofluids flow through a porous cavity for the applications of the heat transfer. Sci. Rep.13(1), 7009 (2023). 10.1038/s41598-023-33650-w PubMed DOI PMC

Alnahdi, A. S., Nasir, S. & Gul, T. Couple stress ternary hybrid nanofluid flow in a contraction channel by means of drug delivery function. Math. Comput. Simul.210, 103–119 (2023).10.1016/j.matcom.2023.02.021 DOI

Nasir, S. et al. Three-dimensional rotating flow of mhd single wall carbon nanotubes over a stretching sheet in presence of thermal radiation. Appl. Nanosci.8, 1361–1378 (2018).10.1007/s13204-018-0766-0 DOI

Nasir, S., Shah, Z., Islam, S., Bonyah, E. & Gul, T. Darcy forchheimer nanofluid thin film flow of swcnts and heat transfer analysis over an unsteady stretching sheet. AIP Adv.9(1), 25 (2019).10.1063/1.5083972 DOI

Saeed, A., Kumam, P., Nasir, S., Gul, T. & Kumam, W. Non-linear convective flow of the thin film nanofluid over an inclined stretching surface. Sci. Rep.11(1), 18410 (2021). 10.1038/s41598-021-97576-x PubMed DOI PMC

Liao, S.-J. On the analytic solution of magnetohydrodynamic flows of non-newtonian fluids over a stretching sheet. J. Fluid Mech.488, 189–212 (2003).10.1017/S0022112003004865 DOI

Farooq, M., Ahmad, S., Javed, M. & Anjum, A. Analysis of cattaneo-christov heat and mass fluxes in the squeezed flow embedded in porous medium with variable mass diffusivity. Res. Phys.7, 3788–3796 (2017).

Ijaz, M. & Ayub, M. Nonlinear convective stratified flow of maxwell nanofluid with activation energy. Heliyon5(1), 52 (2019).10.1016/j.heliyon.2019.e01121 PubMed DOI PMC

Nadeem, S., Kiani, M. N., Saleem, A. & Issakhov, A. Microvascular blood flow with heat transfer in a wavy channel having electroosmotic effects. Electrophoresis41(13–14), 1198–1205 (2020). 10.1002/elps.201900465 PubMed DOI

Ahmad, S. & Nadeem, S. Cattaneo-christov-based study of swcnt-mwcnt/eg casson hybrid nanofluid flow past a lubricated surface with entropy generation. Appl. Nanosci.10, 5449–5458 (2020).10.1007/s13204-020-01367-1 DOI

Jan, W. U. et al. A parametric analysis of the effect of hybrid nanoparticles on the flow field and homogeneous-heterogeneous reaction between squeezing plates. Adv. Math. Phys.20, 1–22 (2022).10.1155/2022/2318436 DOI

Korei, Z. & Louali, K. Prediction of hybrid nanofluids behavior and entropy generation during the cooling of an electronic chip using the lagrangian-eulerian approach. Heat Transfer51(7), 6815–6835 (2022).10.1002/htj.22625 DOI

Bouslimi, J. et al. Dynamics of convective slippery constraints on hybrid radiative sutterby nanofluid flow by galerkin finite element simulation. Nanotechnol. Rev.11(1), 1219–1236 (2022).10.1515/ntrev-2022-0070 DOI

Chu, Y.-M., Bashir, S., Ramzan, M. & Malik, M. Y. Model-based comparative study of magnetohydrodynamics unsteady hybrid nanofluid flow between two infinite parallel plates with particle shape effects. Math. Methods Appl. Sci.46(10), 11568–11582 (2023).10.1002/mma.8234 DOI

Nasir, S., Berrouk, A. S., Aamir, A., Gul, T. & Ali, I. Features of flow and heat transport of mos2+ go hybrid nanofluid with nonlinear chemical reaction, radiation and energy source around a whirling sphere. Heliyon9(4), 52 (2023).10.1016/j.heliyon.2023.e15089 PubMed DOI PMC

Ullah, M. Z., Abuzaid, D., Asma, M. & Bariq, A. Couple stress hybrid nanofluid flow through a converging-diverging channel. J. Nanomater.2021, 1–13 (2021).10.1155/2021/2355258 DOI

Manzoor, U., Imran, M., Muhammad, T., Waqas, H., & Alghamdi, M. Heat transfer improvement in hybrid nanofluid flow over a moving sheet with magnetic dipole. In Waves in Random and Complex Media, pp. 1–15, (2021).

Kumar, R. N. et al. Impact of magnetic dipole on ferromagnetic hybrid nanofluid flow over a stretching cylinder. Phys. Scr.96(4), 045215 (2021).10.1088/1402-4896/abe324 DOI

Irshad, S., Jahan, S. & Majeed, A. H. Computational investigation of nanofluid heat transfer over a stretched sheet in the presence of a magnetic field. J. Surv. Fisher. Sci.5, 1044–1055 (2023).

Elboughdiri, N. et al. Analysis of a ferromagnetic nanofluid saturating a porous medium with nield’s boundary conditions. Mathematics11(22), 4579 (2023).10.3390/math11224579 DOI

Ahmad, I. et al. Novel applications of intelligent computing paradigms for the analysis of nonlinear reactive transport model of the fluid in soft tissues and microvessels. Neural Comput. Appl.31, 9041–9059 (2019).10.1007/s00521-019-04203-y DOI

Waseem, W. et al. A study of changes in temperature profile of porous fin model using cuckoo search algorithm. Alex. Eng. J.59(1), 11–24 (2020).10.1016/j.aej.2019.12.001 DOI

Jadoon, I., Ahmed, A., ur Rehman, A., Shoaib, M., & Raja, M. A. Z. Integrated meta-heuristics finite difference method for the dynamics of nonlinear unipolar electrohydrodynamic pump flow model, Appl. Soft Comput., 97, 106791 (2020).

Shoaib, M. et al. A stochastic numerical analysis based on hybrid nar-rbfs networks nonlinear sitr model for novel covid-19 dynamics. Comput. Methods Programs Biomed.202, 105973 (2021). 10.1016/j.cmpb.2021.105973 PubMed DOI PMC

Hussain, M. et al. Suction/blowing impact on magneto-hydrodynamic mixed convection flow of williamson fluid through stretching porous wedge with viscous dissipation and internal heat generation/absorption. Res. Eng.16, 100709 (2022).

Shoaib, M. et al. Soft computing paradigm for ferrofluid by exponentially stretched surface in the presence of magnetic dipole and heat transfer. Alex. Eng. J.61(2), 1607–1623 (2022).10.1016/j.aej.2021.06.060 DOI

Neuringer, J. L. Some viscous flows of a saturated ferro-fluid under the combined influence of thermal and magnetic field gradients. Int. J. Non-Linear Mech.1(2), 123–137 (1966).10.1016/0020-7462(66)90025-4 DOI

Tahir, W., Bilal, S., Kousar, N., Shah, I. A. & Alqahtani, A. S. Analysis about enhancement in thermal characteristics of viscous fluid flow with induction of ferrite particles by using cattaneo christov theory. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci.236(1), 208–218 (2022).10.1177/09544062211042653 DOI

Andersson, H. & Valnes, O. Flow of a heated ferrofluid over a stretching sheet in the presence of a magnetic dipole. Acta Mech.128(1), 39–47 (1998).10.1007/BF01463158 DOI

Ayub, A., Asjad, M. I., Al-Malki, M. A., Khan, S. & Eldin, S. M. and Abd El-Rahman, M. Scrutiny of nanoscale heat transport with ion-slip and hall currenton ternary mhd cross nanofluid over heated rotating geometry. Case Stud. Therm. Eng.53, 103833 (2024).

Galpaya, C., Induranga, A., Vithanage, V., Mantilaka, P. & Koswattage, K. R. Comparative study on the thermal properties of engine oils and their nanofluids incorporating fullerene-c60, tio2 and fe2o3 at different temperatures. Energies17(3), 732 (2024).10.3390/en17030732 DOI

Khashi’ie, N. S., Waini, I., Arifin, N. M. & Pop, I. Unsteady squeezing flow of cu-al2o3/water hybrid nanofluid in a horizontal channel with magnetic field. Sci. Rep.11(1), 14128 (2021). 10.1038/s41598-021-93644-4 PubMed DOI PMC

Shoaib, M., Saqib, S. U., Nisar, K. S., Raja, M. A. Z. & Mohammed, I. A. Numerical treatment for the desirability of hall current and activation energy in the enhancement of heat transfer in a nanofluidic system. Arab. J. Chem.17(2), 105526 (2024).10.1016/j.arabjc.2023.105526 DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...