A high-efficiency poly-input boost DC-DC converter for energy storage and electric vehicle applications
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
PubMed
39107428
PubMed Central
PMC11303389
DOI
10.1038/s41598-024-69254-1
PII: 10.1038/s41598-024-69254-1
Knihovny.cz E-zdroje
- Klíčová slova
- Conversion efficiency, Electric vehicle (EV) applications, Energy storage, Poly-input DC–DC converter (PIDC), Renewable energy systems,
- Publikační typ
- časopisecké články MeSH
This research paper introduces an avant-garde poly-input DC-DC converter (PIDC) meticulously engineered for cutting-edge energy storage and electric vehicle (EV) applications. The pioneering converter synergizes two primary power sources-solar energy and fuel cells-with an auxiliary backup source, an energy storage device battery (ESDB). The PIDC showcases a remarkable enhancement in conversion efficiency, achieving up to 96% compared to the conventional 85-90% efficiency of traditional converters. This substantial improvement is attained through an advanced control strategy, rigorously validated via MATLAB/Simulink simulations and real-time experimentation on a 100 W test bench model. Simulation results reveal that the PIDC sustains stable operation and superior efficiency across diverse load conditions, with a peak efficiency of 96% when the ESDB is disengaged and an efficiency spectrum of 91-95% during battery charging and discharging phases. Additionally, the integration of solar power curtails dependence on fuel cells by up to 40%, thereby augmenting overall system efficiency and sustainability. The PIDC's adaptability and enhanced performance render it highly suitable for a wide array of applications, including poly-input DC-DC conversion, energy storage management, and EV power systems. This innovative paradigm in power conversion and management is poised to significantly elevate the efficiency and reliability of energy storage and utilization in contemporary electric vehicles and renewable energy infrastructures.
Department of Electrical and Electronics Engineering Christ Deemed to Be University Bangalore India
Department of Electrical and Electronics Engineering Mohan Babu University Tirupati India
Department of Electrical Engineering Graphic Era Dehradun 248002 India
Graphic Era Hill University Dehradun 248002 India
Hourani Center for Applied Scientific Research Al Ahliyya Amman University Amman Jordan
Zobrazit více v PubMed
Narimani, M. & Moschopoulos, G. An investigation on the novel use of high-power three-level converter topologies to improve light-load efficiency in low power DC/DC full-bridge converters. IEEE Trans. Industr. Electron.61(10), 5690–5692 (2014).10.1109/TIE.2014.2300063 DOI
Zhang, R. et al. Centralized active power decoupling method for the CHB converter with reduced components and simplified control. IEEE Trans. Power Electron.39(1), 47–52. 10.1109/TPEL.2023.3321671 (2024).10.1109/TPEL.2023.3321671 DOI
Ayachit, A. & Kazimierczuk, M. K. Averaged small-signal model of PWM DC-DC converters in CCM including switching power loss. IEEE Trans. Circuits Syst. II Express Briefs66(2), 262–266 (2019).
Kim, K., Cha, H., Park, S. & Lee, I. A modified series-capacitor high conversion ratio DC–DC converter eliminating start-up voltage stress problem. IEEE Trans. Power Electron.33(1), 8–12 (2018).10.1109/TPEL.2017.2705705 DOI
Shirkhani, M. et al. A review on microgrid decentralized energy/voltage control structures and methods. Energy Rep.10, 368–380. 10.1016/j.egyr.2023.06.022 (2023).10.1016/j.egyr.2023.06.022 DOI
Guo, Z., Li, H., Liu, C., Zhao, Y. & Su, W. Stability-improvement method of cascaded DC-DC converters with additional voltage-error mutual feedback control. Chin. J. Electrical Eng.5(2), 63–71 (2019).10.23919/CJEE.2019.000012 DOI
Yang, L., Liang, T. & Chen, J. Transformer less DC–DC converters with high step-up voltage gain. IEEE Trans. Industr. Electron.56(8), 3144–3152 (2009).10.1109/TIE.2009.2022512 DOI
Meng, Q., Hussain, S., Luo, F., Wang, Z. & Jin, X. An online reinforcement learning-based energy management strategy for microgrids with centralized control. IEEE Transact. Industry Appl.10.1109/TIA.2024.3430264 (2024).10.1109/TIA.2024.3430264 DOI
Ye, Y., Zhou, K., Zhang, B., Wang, D. & Wang, J. High-performance repetitive control of PWM DC-AC converters with real-time phase-lead FIR filter. IEEE Trans. Circuits Syst. II Express Briefs53(8), 768–772 (2006).10.1109/TCSII.2006.875383 DOI
Sayed, M. A., Suzuki, K., Takeshita, T. & Kitagawa, W. Soft-switching PWM technique for grid-tie isolated bidirectional DC–AC converter with SiC device. IEEE Trans. Ind. Appl.53(6), 5602–5614 (2017).10.1109/TIA.2017.2731738 DOI
Liang, J. et al. A direct yaw moment control framework through robust T-S fuzzy approach considering vehicle stability margin. IEEE/ASME Trans. Mechatron.29(1), 166–178. 10.1109/TMECH.2023.3274689 (2024).10.1109/TMECH.2023.3274689 DOI
Zhou, X., Xu, J. & Zhong, S. Single-stage soft-switching low-distortion bipolar PWM modulation high-frequency-link DC–AC converter with clamping circuits. IEEE Trans. Industr. Electron.65(10), 7719–7729 (2018).10.1109/TIE.2018.2801807 DOI
Nayak, P., Rajashekara, K. & Pramanick, S. K. Soft-switched modulation technique for a single-stage matrix-type isolated DC–AC converter. IEEE Trans. Ind. Appl.55(6), 7642–7656 (2019).10.1109/TIA.2018.2889977 DOI
Zhang, J. et al. A novel multiport transformer-less unified power flow controller. IEEE Trans. Power Electron.39(4), 4278–4290. 10.1109/TPEL.2023.3347900 (2024).10.1109/TPEL.2023.3347900 DOI
Yang, J., He, Z., Ke, J. & Xie, M. A new hybrid multilevel DC–AC converter with reduced energy storage requirement and power losses for HVDC applications. IEEE Trans. Power Electron.34(3), 2082–2096 (2019).10.1109/TPEL.2018.2839117 DOI
Zhang, J. et al. An embedded DC power flow controller based on full-bridge modular multilevel converter. IEEE Trans. Industr. Electron.71(3), 2556–2566. 10.1109/TIE.2023.3265041 (2024).10.1109/TIE.2023.3265041 DOI
Lee, D.-Y., Lee, B.-K., Yoo, S.-B. & Hyun, D.-S. An improved full-bridge zero-voltage-transition PWM DC/DC converter with zero-voltage/zero-current switching of the auxiliary switches. IEEE Trans. Ind. Appl.36(2), 558–566 (2000).10.1109/28.833774 DOI
Ju, Y., Liu, W., Zhang, Z. & Zhang, R. Distributed three-phase power flow for AC/DC hybrid networked microgrids considering converter limiting constraints. IEEE Transactions on Smart Grid13(3), 1691–1708. 10.1109/TSG.2022.3140212 (2022).10.1109/TSG.2022.3140212 DOI
Andre, D. et al. Characterization of high-power lithium-ion batteries by electrochemical impedance spectroscopy. I. Experimental investigation. J. Power Sources196(12), 5334–5341 (2011).10.1016/j.jpowsour.2010.12.102 DOI
Hannan, M. A. et al. A review of lithium-ion battery state of charge estimation and management system in electric vehicle applications: challenges and recommendations. Renew. Sustain. Energy Rev.78, 834–854 (2017).10.1016/j.rser.2017.05.001 DOI