Shallow conductance decay along the heme array of a single tetraheme protein wire

. 2024 Aug 07 ; 15 (31) : 12326-12335. [epub] 20240703

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39118640

Multiheme cytochromes (MHCs) are the building blocks of highly conductive micrometre-long supramolecular wires found in so-called electrical bacteria. Recent studies have revealed that these proteins possess a long supramolecular array of closely packed heme cofactors along the main molecular axis alternating between perpendicular and stacking configurations (TST = T-shaped, stacked, T-shaped). While TST arrays have been identified as the likely electron conduit, the mechanisms of outstanding long-range charge transport observed in these structures remain unknown. Here we study charge transport on individual small tetraheme cytochromes (STCs) containing a single TST heme array. Individual STCs are trapped in a controllable nanoscale tunnelling gap. By modulating the tunnelling gap separation, we are able to selectively probe four different electron pathways involving 1, 2, 3 and 4 heme cofactors, respectively, leading to the determination of the electron tunnelling decay constant along the TST heme motif. Conductance calculations of selected single-STC junctions are in excellent agreement with experiments and suggest a mechanism of electron tunnelling with shallow length decay constant through an individual STC. These results demonstrate that an individual TST motif supporting electron tunnelling might contribute to a tunnelling-assisted charge transport diffusion mechanism in larger TST associations.

Zobrazit více v PubMed

Wang F. Gu Y. O'Brien J. P. Yi S. M. Yalcin S. E. Srikanth V. Shen C. Vu D. Ing N. L. Hochbaum A. I. Egelman E. H. Malvankar N. S. Cell. 2019;177:361–369. doi: 10.1016/j.cell.2019.03.029. PubMed DOI PMC

Adhikari R. Y. Malvankar N. S. Tuominen M. T. Lovley D. R. RSC Adv. 2016;6:8354–8357. doi: 10.1039/C5RA28092C. DOI

Polizzi N. F. Skourtis S. S. Beratan D. N. Faraday Discuss. 2012;155:43–62. doi: 10.1039/C1FD00098E. PubMed DOI PMC

El-Naggar M. Y. Wanger G. Leung K. M. Yuzvinsky T. D. Southam G. Yang J. Lau W. M. Nealson K. H. Gorby Y. A. Proc. Natl. Acad. Sci. U. S. A. 2010;107:18127–18131. doi: 10.1073/pnas.1004880107. PubMed DOI PMC

Garg K. Raichlin S. Bendikov T. Pecht I. Sheves M. Cahen D. ACS Appl. Mater. Interfaces. 2018;10:41599–41607. doi: 10.1021/acsami.8b16312. PubMed DOI

Chabal Y. J. Feldman L. C. Electrochem. Soc. Interface. 2005:31. doi: 10.1149/2.F07051IF. DOI

Amdursky N. Marchak D. Sepunaru L. Pecht I. Sheves M. Cahen D. Adv. Mater. 2014;26:7142–7161. doi: 10.1002/adma.201402304. PubMed DOI

Edwards M. J. White G. F. Butt J. N. Richardson D. J. Clarke T. A. Cell. 2020;181:665–673. doi: 10.1016/j.cell.2020.03.032. PubMed DOI PMC

Wang F. Gu Y. O'Brien J. P. Yi S. M. Yalcin S. E. Srikanth V. Shen C. Vu D. Ing N. L. Hochbaum A. I. Egelman E. H. Malvankar N. S. Cell. 2019;177:361–369. doi: 10.1016/j.cell.2019.03.029. PubMed DOI PMC

Xie X. Li P. Xu Y. Zhou L. Yan Y. Xie L. Jia C. Guo X. ACS Nano. 2022;16:3476–3505. doi: 10.1021/acsnano.1c11433. PubMed DOI

Chen F. Hihath J. Huang Z. Li X. Tao N. J. Annu. Rev. Phys. Chem. 2007;58:535–564. doi: 10.1146/annurev.physchem.58.032806.104523. PubMed DOI

Yoshida K. V Pobelov I. Manrique D. Z. Pope T. Mészáros G. Gulcur M. Bryce M. R. Lambert C. J. Wandlowski T. Sci. Rep. 2015;5:9002. doi: 10.1038/srep09002. PubMed DOI PMC

Capozzi B. Low J. Z. Xia J. Liu Z. F. Neaton J. B. Campos L. M. Venkataraman L. Nano Lett. 2016;16:3949–3954. doi: 10.1021/acs.nanolett.6b01592. PubMed DOI

Jeong H. Li H. B. Domulevicz L. Hihath J. Adv. Funct. Mater. 2020;30:1–10.

Artés J. M. Díez-Pérez I. Gorostiza P. Nano Lett. 2012;12:2679–2684. doi: 10.1021/nl2028969. PubMed DOI

López-Martínez M. Artés J. M. Sarasso V. Carminati M. Díez-Pérez I. Sanz F. Gorostiza P. Small. 2017;13:1700958. doi: 10.1002/smll.201700958. PubMed DOI

Zhang B. Song W. Brown J. Nemanich R. Lindsay S. J. Am. Chem. Soc. 2020;142:6432–6438. doi: 10.1021/jacs.0c01805. PubMed DOI PMC

Jiang T. Zeng B. F. Zhang B. Tang L. Chem. Soc. Rev. 2023;52:5968–6002. doi: 10.1039/D2CS00519K. PubMed DOI

Zhuang X. Zhang A. Qiu S. Tang C. Zhao S. Li H. Zhang Y. Wang Y. Wang B. Fang B. Hong W. iScience. 2020;23:101001. doi: 10.1016/j.isci.2020.101001. PubMed DOI PMC

Zhang J. Chi Q. Hansen A. G. Jensen P. S. Salvatore P. Ulstrup J. FEBS Lett. 2012;586:526–535. doi: 10.1016/j.febslet.2011.10.023. PubMed DOI

Yu X. Lovrincic R. Sepunaru L. Li W. Vilan A. Pecht I. Sheves M. Cahen D. ACS Nano. 2015;9:9955–9963. doi: 10.1021/acsnano.5b03950. PubMed DOI

Li W. Sepunaru L. Amdursky N. Cohen S. R. Pecht I. Sheves M. Cahen D. ACS Nano. 2012;6:10816–10824. doi: 10.1021/nn3041705. PubMed DOI

Sepunaru L. Friedman N. Pecht I. Sheves M. Cahen D. J. Am. Chem. Soc. 2012;134:4169–4176. doi: 10.1021/ja2097139. PubMed DOI

Ruiz M. P. Aragonès A. C. Camarero N. Vilhena J. G. Ortega M. Zotti L. A. Pérez R. Cuevas J. C. Gorostiza P. Díez-Pérez I. J. Am. Chem. Soc. 2017;139:15337–15346. doi: 10.1021/jacs.7b06130. PubMed DOI

Garg K. Ghosh M. Eliash T. van Wonderen J. H. Butt J. N. Shi L. Jiang X. Zdenek F. Blumberger J. Pecht I. Sheves M. Cahen D. Chem. Sci. 2018;9:7304–7310. doi: 10.1039/C8SC01716F. PubMed DOI PMC

Aragonès A. C. Martín-Rodríguez A. Aravena D. Puigmartí-Luis J. Amabilino D. B. Aliaga-Alcalde N. González-Campo A. Ruiz E. Díez-Pérez I. Angew. Chem. 2020;132:19355–19363. doi: 10.1002/ange.202007237. PubMed DOI PMC

Noori M. Aragonès A. C. Di Palma G. Darwish N. Bailey S. W. D. Al-Galiby Q. Grace I. Amabilino D. B. González-Campo A. Díez-Pérez I. Lambert C. J. Sci. Rep. 2016;6:37352. doi: 10.1038/srep37352. PubMed DOI PMC

Liu Z.-F. Wei S. Yoon H. Adak O. Ponce I. Jiang Y. Jang W.-D. Campos L. M. Venkataraman L. Neaton J. B. Nano Lett. 2014;14:5365–5370. doi: 10.1021/nl5025062. PubMed DOI

El Abbassi M. Zwick P. Rates A. Stefani D. Prescimone A. Mayor M. Van Der Zant H. S. J. Dulić D. Chem. Sci. 2019;10:8299–8305. doi: 10.1039/C9SC02497B. PubMed DOI PMC

Artés J. M. López-Martínez M. Díez-Pérez I. Sanz F. Gorostiza P. Small. 2014;10:2537–2541. doi: 10.1002/smll.201303753. PubMed DOI

Della Pia E. A. Chi Q. Jones D. D. Macdonald J. E. Ulstrup J. Elliott M. Nano Lett. 2011;11:176–182. doi: 10.1021/nl103334q. PubMed DOI

Huang X. Tang C. Li J. Chen L.-C. Zheng J. Zhang P. Le J. Li R. Li X. Liu J. Yang Y. Shi J. Chen Z. Bai M. Zhang H.-L. Xia H. Cheng J. Tian Z.-Q. Hong W. Sci. Adv. 2019;5:eaaw3072. doi: 10.1126/sciadv.aaw3072. PubMed DOI PMC

Zhang B. Song W. Pang P. Lai H. Chen Q. Zhang P. Lindsay S. Proc. Natl. Acad. Sci. U. S. A. 2019;116:5886–5891. doi: 10.1073/pnas.1819674116. PubMed DOI PMC

Eshel Y. Peskin U. Amdursky N. Nanotechnology. 2020;31:314002. doi: 10.1088/1361-6528/ab8767. PubMed DOI

van Wonderen J. H. Li D. Piper S. E. H. Lau C. Y. Jenner L. P. Hall C. R. Clarke T. A. Watmough N. J. Butt J. N. ChemBioChem. 2018;19:2206–2215. doi: 10.1002/cbic.201800313. PubMed DOI

Chi Q. Farver O. Ulstrup J. Proc. Natl. Acad. Sci. U. S. A. 2005;102:16203–16208. doi: 10.1073/pnas.0508257102. PubMed DOI PMC

Khomutov G. B. Belovolova L. V. Gubin S. P. Khanin V. V. Obydenov A. Y. Sergeev-Cherenkov A. N. Soldatov E. S. Trifonov A. S. Bioelectrochemistry. 2002;55:177–181. doi: 10.1016/S1567-5394(01)00135-9. PubMed DOI

Friis E. P. Andersen J. E. T. Madsen L. L. Møller P. Ulstrup J. J. Electroanal. Chem. 1997;431:35–38. doi: 10.1016/S0022-0728(97)00178-2. DOI

Chi Q. Farver O. Ulstrup J. Proc. Natl. Acad. Sci. U. S. A. 2005;102:16203–16208. doi: 10.1073/pnas.0508257102. PubMed DOI PMC

Artés J. M. López-Martínez M. Díez-Pérez I. Sanz F. Gorostiza P. Electrochim. Acta. 2014;140:83–95. doi: 10.1016/j.electacta.2014.05.089. DOI

Xu B. Tao N. J. Science. 2003;301:1221–1223. doi: 10.1126/science.1087481. PubMed DOI

Díez-Pérez I. Hihath J. Lee Y. Yu L. Adamska L. a Kozhushner M. Oleynik I. I. Tao N. Nat. Chem. 2009;1:635–641. doi: 10.1038/nchem.392. PubMed DOI

Vezzoli A. Nanoscale. 2022;14:2874–2884. doi: 10.1039/D1NR06891A. PubMed DOI

Gao T. Pan Z. Cai Z. Zheng J. Tang C. Yuan S. qiang Zhao S. Bai H. Yang Y. Shi J. Xiao Z. Liu J. Hong W. Chem. Commun. 2021;57:7160–7163. doi: 10.1039/D1CC02111G. PubMed DOI

Haiss W. Nichols R. J. van Zalinge H. Higgins S. J. Bethell D. Schiffrin D. J. Phys. Chem. Chem. Phys. 2004;6:4330–4337. doi: 10.1039/B404929B. PubMed DOI

Diez-Perez I. Hihath J. Hines T. Wang Z.-S. Zhou G. Müllen K. Tao N. Nat. Nanotechnol. 2011;6:226–231. doi: 10.1038/nnano.2011.20. PubMed DOI

Alfaro J. A. Bohländer P. Dai M. Filius M. Howard C. J. van Kooten X. F. Ohayon S. Pomorski A. Schmid S. Aksimentiev A. Anslyn E. V. Bedran G. Cao C. Chinappi M. Coyaud E. Dekker C. Dittmar G. Drachman N. Eelkema R. Goodlett D. Hentz S. Kalathiya U. Kelleher N. L. Kelly R. T. Kelman Z. Kim S. H. Kuster B. Rodriguez-Larrea D. Lindsay S. Maglia G. Marcotte E. M. Marino J. P. Masselon C. Mayer M. Samaras P. Sarthak K. Sepiashvili L. Stein D. Wanunu M. Wilhelm M. Yin P. Meller A. Joo C. Nat. Methods. 2021;18:604–617. doi: 10.1038/s41592-021-01143-1. PubMed DOI PMC

Aragonès A. C. Darwish N. Saletra W. J. Pérez-García L. Sanz F. Puigmartí-Luis J. Amabilino D. B. Díez-Pérez I. Nano Lett. 2014;14:4751–4756. doi: 10.1021/nl501884g. PubMed DOI

Zwick P. Dulić D. Van Der Zant H. S. J. Mayor M. Nanoscale. 2021;13:15500–15525. doi: 10.1039/D1NR04523G. PubMed DOI PMC

Aragonès A. C. Martín-Rodríguez A. Aravena D. Puigmartí-Luis J. Amabilino D. B. Aliaga-Alcalde N. González-Campo A. Ruiz E. Díez-Pérez I. Angew. Chem. 2020;132:19355–19363. doi: 10.1002/ange.202007237. PubMed DOI PMC

Hines T. Díez-Pérez I. Nakamura H. Shimazaki T. Asai Y. Tao N. J. Am. Chem. Soc. 2013;135:3319–3322. doi: 10.1021/ja3106434. PubMed DOI

Jiang X. Burger B. Gajdos F. Bortolotti C. Futera Z. Breuer M. Blumberger J. Proc. Natl. Acad. Sci. U. S. A. 2019;116:3425–3430. doi: 10.1073/pnas.1818003116. PubMed DOI PMC

van Wonderen J. H. Adamczyk K. Wu X. Jiang X. Piper S. E. H. Hall C. R. Edwards M. J. Clarke T. A. Zhang H. Jeuken L. J. C. Sazanovich I. V. Towrie M. Blumberger J. Meech S. R. Butt J. N. Proc. Natl. Acad. Sci. U. S. A. 2021;118:14–18. doi: 10.1073/pnas.2107939118. PubMed DOI PMC

Sarhangi S. M. Matyushov D. V. J. Phys. Chem. B. 2022;126:3000–3011. doi: 10.1021/acs.jpcb.2c00338. PubMed DOI

Romero-Muñiz C. Ortega M. Vilhena J. G. Díez-Pérez I. Pérez R. Cuevas J. C. Zotti L. A. J. Phys. Chem. C. 2021;125(3):1693–1702. doi: 10.1021/acs.jpcc.0c09364. DOI

Futera Z. Ide I. Kayser B. Garg K. Jiang X. Van Wonderen J. H. Butt J. N. Ishii H. Pecht I. Sheves M. Cahen D. Blumberger J. J. Phys. Chem. Lett. 2020;11:9766–9774. doi: 10.1021/acs.jpclett.0c02686. PubMed DOI PMC

Futera Z. Wu X. Blumberger J. J. Phys. Chem. Lett. 2023;14:445–452. doi: 10.1021/acs.jpclett.2c03361. PubMed DOI

Zwick P. Dulić D. Van Der Zant H. S. J. Mayor M. Nanoscale. 2021;13:15500–15525. doi: 10.1039/D1NR04523G. PubMed DOI PMC

Hines T. Diez-Perez I. Hihath J. Liu H. Wang Z. S. Zhao J. Zhou G. Müllen K. Tao N. J. Am. Chem. Soc. 2010;132:11658–11664. doi: 10.1021/ja1040946. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...