Shallow conductance decay along the heme array of a single tetraheme protein wire
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39118640
PubMed Central
PMC11304805
DOI
10.1039/d4sc01366b
PII: d4sc01366b
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Multiheme cytochromes (MHCs) are the building blocks of highly conductive micrometre-long supramolecular wires found in so-called electrical bacteria. Recent studies have revealed that these proteins possess a long supramolecular array of closely packed heme cofactors along the main molecular axis alternating between perpendicular and stacking configurations (TST = T-shaped, stacked, T-shaped). While TST arrays have been identified as the likely electron conduit, the mechanisms of outstanding long-range charge transport observed in these structures remain unknown. Here we study charge transport on individual small tetraheme cytochromes (STCs) containing a single TST heme array. Individual STCs are trapped in a controllable nanoscale tunnelling gap. By modulating the tunnelling gap separation, we are able to selectively probe four different electron pathways involving 1, 2, 3 and 4 heme cofactors, respectively, leading to the determination of the electron tunnelling decay constant along the TST heme motif. Conductance calculations of selected single-STC junctions are in excellent agreement with experiments and suggest a mechanism of electron tunnelling with shallow length decay constant through an individual STC. These results demonstrate that an individual TST motif supporting electron tunnelling might contribute to a tunnelling-assisted charge transport diffusion mechanism in larger TST associations.
Zobrazit více v PubMed
Wang F. Gu Y. O'Brien J. P. Yi S. M. Yalcin S. E. Srikanth V. Shen C. Vu D. Ing N. L. Hochbaum A. I. Egelman E. H. Malvankar N. S. Cell. 2019;177:361–369. doi: 10.1016/j.cell.2019.03.029. PubMed DOI PMC
Adhikari R. Y. Malvankar N. S. Tuominen M. T. Lovley D. R. RSC Adv. 2016;6:8354–8357. doi: 10.1039/C5RA28092C. DOI
Polizzi N. F. Skourtis S. S. Beratan D. N. Faraday Discuss. 2012;155:43–62. doi: 10.1039/C1FD00098E. PubMed DOI PMC
El-Naggar M. Y. Wanger G. Leung K. M. Yuzvinsky T. D. Southam G. Yang J. Lau W. M. Nealson K. H. Gorby Y. A. Proc. Natl. Acad. Sci. U. S. A. 2010;107:18127–18131. doi: 10.1073/pnas.1004880107. PubMed DOI PMC
Garg K. Raichlin S. Bendikov T. Pecht I. Sheves M. Cahen D. ACS Appl. Mater. Interfaces. 2018;10:41599–41607. doi: 10.1021/acsami.8b16312. PubMed DOI
Chabal Y. J. Feldman L. C. Electrochem. Soc. Interface. 2005:31. doi: 10.1149/2.F07051IF. DOI
Amdursky N. Marchak D. Sepunaru L. Pecht I. Sheves M. Cahen D. Adv. Mater. 2014;26:7142–7161. doi: 10.1002/adma.201402304. PubMed DOI
Edwards M. J. White G. F. Butt J. N. Richardson D. J. Clarke T. A. Cell. 2020;181:665–673. doi: 10.1016/j.cell.2020.03.032. PubMed DOI PMC
Wang F. Gu Y. O'Brien J. P. Yi S. M. Yalcin S. E. Srikanth V. Shen C. Vu D. Ing N. L. Hochbaum A. I. Egelman E. H. Malvankar N. S. Cell. 2019;177:361–369. doi: 10.1016/j.cell.2019.03.029. PubMed DOI PMC
Xie X. Li P. Xu Y. Zhou L. Yan Y. Xie L. Jia C. Guo X. ACS Nano. 2022;16:3476–3505. doi: 10.1021/acsnano.1c11433. PubMed DOI
Chen F. Hihath J. Huang Z. Li X. Tao N. J. Annu. Rev. Phys. Chem. 2007;58:535–564. doi: 10.1146/annurev.physchem.58.032806.104523. PubMed DOI
Yoshida K. V Pobelov I. Manrique D. Z. Pope T. Mészáros G. Gulcur M. Bryce M. R. Lambert C. J. Wandlowski T. Sci. Rep. 2015;5:9002. doi: 10.1038/srep09002. PubMed DOI PMC
Capozzi B. Low J. Z. Xia J. Liu Z. F. Neaton J. B. Campos L. M. Venkataraman L. Nano Lett. 2016;16:3949–3954. doi: 10.1021/acs.nanolett.6b01592. PubMed DOI
Jeong H. Li H. B. Domulevicz L. Hihath J. Adv. Funct. Mater. 2020;30:1–10.
Artés J. M. Díez-Pérez I. Gorostiza P. Nano Lett. 2012;12:2679–2684. doi: 10.1021/nl2028969. PubMed DOI
López-Martínez M. Artés J. M. Sarasso V. Carminati M. Díez-Pérez I. Sanz F. Gorostiza P. Small. 2017;13:1700958. doi: 10.1002/smll.201700958. PubMed DOI
Zhang B. Song W. Brown J. Nemanich R. Lindsay S. J. Am. Chem. Soc. 2020;142:6432–6438. doi: 10.1021/jacs.0c01805. PubMed DOI PMC
Jiang T. Zeng B. F. Zhang B. Tang L. Chem. Soc. Rev. 2023;52:5968–6002. doi: 10.1039/D2CS00519K. PubMed DOI
Zhuang X. Zhang A. Qiu S. Tang C. Zhao S. Li H. Zhang Y. Wang Y. Wang B. Fang B. Hong W. iScience. 2020;23:101001. doi: 10.1016/j.isci.2020.101001. PubMed DOI PMC
Zhang J. Chi Q. Hansen A. G. Jensen P. S. Salvatore P. Ulstrup J. FEBS Lett. 2012;586:526–535. doi: 10.1016/j.febslet.2011.10.023. PubMed DOI
Yu X. Lovrincic R. Sepunaru L. Li W. Vilan A. Pecht I. Sheves M. Cahen D. ACS Nano. 2015;9:9955–9963. doi: 10.1021/acsnano.5b03950. PubMed DOI
Li W. Sepunaru L. Amdursky N. Cohen S. R. Pecht I. Sheves M. Cahen D. ACS Nano. 2012;6:10816–10824. doi: 10.1021/nn3041705. PubMed DOI
Sepunaru L. Friedman N. Pecht I. Sheves M. Cahen D. J. Am. Chem. Soc. 2012;134:4169–4176. doi: 10.1021/ja2097139. PubMed DOI
Ruiz M. P. Aragonès A. C. Camarero N. Vilhena J. G. Ortega M. Zotti L. A. Pérez R. Cuevas J. C. Gorostiza P. Díez-Pérez I. J. Am. Chem. Soc. 2017;139:15337–15346. doi: 10.1021/jacs.7b06130. PubMed DOI
Garg K. Ghosh M. Eliash T. van Wonderen J. H. Butt J. N. Shi L. Jiang X. Zdenek F. Blumberger J. Pecht I. Sheves M. Cahen D. Chem. Sci. 2018;9:7304–7310. doi: 10.1039/C8SC01716F. PubMed DOI PMC
Aragonès A. C. Martín-Rodríguez A. Aravena D. Puigmartí-Luis J. Amabilino D. B. Aliaga-Alcalde N. González-Campo A. Ruiz E. Díez-Pérez I. Angew. Chem. 2020;132:19355–19363. doi: 10.1002/ange.202007237. PubMed DOI PMC
Noori M. Aragonès A. C. Di Palma G. Darwish N. Bailey S. W. D. Al-Galiby Q. Grace I. Amabilino D. B. González-Campo A. Díez-Pérez I. Lambert C. J. Sci. Rep. 2016;6:37352. doi: 10.1038/srep37352. PubMed DOI PMC
Liu Z.-F. Wei S. Yoon H. Adak O. Ponce I. Jiang Y. Jang W.-D. Campos L. M. Venkataraman L. Neaton J. B. Nano Lett. 2014;14:5365–5370. doi: 10.1021/nl5025062. PubMed DOI
El Abbassi M. Zwick P. Rates A. Stefani D. Prescimone A. Mayor M. Van Der Zant H. S. J. Dulić D. Chem. Sci. 2019;10:8299–8305. doi: 10.1039/C9SC02497B. PubMed DOI PMC
Artés J. M. López-Martínez M. Díez-Pérez I. Sanz F. Gorostiza P. Small. 2014;10:2537–2541. doi: 10.1002/smll.201303753. PubMed DOI
Della Pia E. A. Chi Q. Jones D. D. Macdonald J. E. Ulstrup J. Elliott M. Nano Lett. 2011;11:176–182. doi: 10.1021/nl103334q. PubMed DOI
Huang X. Tang C. Li J. Chen L.-C. Zheng J. Zhang P. Le J. Li R. Li X. Liu J. Yang Y. Shi J. Chen Z. Bai M. Zhang H.-L. Xia H. Cheng J. Tian Z.-Q. Hong W. Sci. Adv. 2019;5:eaaw3072. doi: 10.1126/sciadv.aaw3072. PubMed DOI PMC
Zhang B. Song W. Pang P. Lai H. Chen Q. Zhang P. Lindsay S. Proc. Natl. Acad. Sci. U. S. A. 2019;116:5886–5891. doi: 10.1073/pnas.1819674116. PubMed DOI PMC
Eshel Y. Peskin U. Amdursky N. Nanotechnology. 2020;31:314002. doi: 10.1088/1361-6528/ab8767. PubMed DOI
van Wonderen J. H. Li D. Piper S. E. H. Lau C. Y. Jenner L. P. Hall C. R. Clarke T. A. Watmough N. J. Butt J. N. ChemBioChem. 2018;19:2206–2215. doi: 10.1002/cbic.201800313. PubMed DOI
Chi Q. Farver O. Ulstrup J. Proc. Natl. Acad. Sci. U. S. A. 2005;102:16203–16208. doi: 10.1073/pnas.0508257102. PubMed DOI PMC
Khomutov G. B. Belovolova L. V. Gubin S. P. Khanin V. V. Obydenov A. Y. Sergeev-Cherenkov A. N. Soldatov E. S. Trifonov A. S. Bioelectrochemistry. 2002;55:177–181. doi: 10.1016/S1567-5394(01)00135-9. PubMed DOI
Friis E. P. Andersen J. E. T. Madsen L. L. Møller P. Ulstrup J. J. Electroanal. Chem. 1997;431:35–38. doi: 10.1016/S0022-0728(97)00178-2. DOI
Chi Q. Farver O. Ulstrup J. Proc. Natl. Acad. Sci. U. S. A. 2005;102:16203–16208. doi: 10.1073/pnas.0508257102. PubMed DOI PMC
Artés J. M. López-Martínez M. Díez-Pérez I. Sanz F. Gorostiza P. Electrochim. Acta. 2014;140:83–95. doi: 10.1016/j.electacta.2014.05.089. DOI
Xu B. Tao N. J. Science. 2003;301:1221–1223. doi: 10.1126/science.1087481. PubMed DOI
Díez-Pérez I. Hihath J. Lee Y. Yu L. Adamska L. a Kozhushner M. Oleynik I. I. Tao N. Nat. Chem. 2009;1:635–641. doi: 10.1038/nchem.392. PubMed DOI
Vezzoli A. Nanoscale. 2022;14:2874–2884. doi: 10.1039/D1NR06891A. PubMed DOI
Gao T. Pan Z. Cai Z. Zheng J. Tang C. Yuan S. qiang Zhao S. Bai H. Yang Y. Shi J. Xiao Z. Liu J. Hong W. Chem. Commun. 2021;57:7160–7163. doi: 10.1039/D1CC02111G. PubMed DOI
Haiss W. Nichols R. J. van Zalinge H. Higgins S. J. Bethell D. Schiffrin D. J. Phys. Chem. Chem. Phys. 2004;6:4330–4337. doi: 10.1039/B404929B. PubMed DOI
Diez-Perez I. Hihath J. Hines T. Wang Z.-S. Zhou G. Müllen K. Tao N. Nat. Nanotechnol. 2011;6:226–231. doi: 10.1038/nnano.2011.20. PubMed DOI
Alfaro J. A. Bohländer P. Dai M. Filius M. Howard C. J. van Kooten X. F. Ohayon S. Pomorski A. Schmid S. Aksimentiev A. Anslyn E. V. Bedran G. Cao C. Chinappi M. Coyaud E. Dekker C. Dittmar G. Drachman N. Eelkema R. Goodlett D. Hentz S. Kalathiya U. Kelleher N. L. Kelly R. T. Kelman Z. Kim S. H. Kuster B. Rodriguez-Larrea D. Lindsay S. Maglia G. Marcotte E. M. Marino J. P. Masselon C. Mayer M. Samaras P. Sarthak K. Sepiashvili L. Stein D. Wanunu M. Wilhelm M. Yin P. Meller A. Joo C. Nat. Methods. 2021;18:604–617. doi: 10.1038/s41592-021-01143-1. PubMed DOI PMC
Aragonès A. C. Darwish N. Saletra W. J. Pérez-García L. Sanz F. Puigmartí-Luis J. Amabilino D. B. Díez-Pérez I. Nano Lett. 2014;14:4751–4756. doi: 10.1021/nl501884g. PubMed DOI
Zwick P. Dulić D. Van Der Zant H. S. J. Mayor M. Nanoscale. 2021;13:15500–15525. doi: 10.1039/D1NR04523G. PubMed DOI PMC
Aragonès A. C. Martín-Rodríguez A. Aravena D. Puigmartí-Luis J. Amabilino D. B. Aliaga-Alcalde N. González-Campo A. Ruiz E. Díez-Pérez I. Angew. Chem. 2020;132:19355–19363. doi: 10.1002/ange.202007237. PubMed DOI PMC
Hines T. Díez-Pérez I. Nakamura H. Shimazaki T. Asai Y. Tao N. J. Am. Chem. Soc. 2013;135:3319–3322. doi: 10.1021/ja3106434. PubMed DOI
Jiang X. Burger B. Gajdos F. Bortolotti C. Futera Z. Breuer M. Blumberger J. Proc. Natl. Acad. Sci. U. S. A. 2019;116:3425–3430. doi: 10.1073/pnas.1818003116. PubMed DOI PMC
van Wonderen J. H. Adamczyk K. Wu X. Jiang X. Piper S. E. H. Hall C. R. Edwards M. J. Clarke T. A. Zhang H. Jeuken L. J. C. Sazanovich I. V. Towrie M. Blumberger J. Meech S. R. Butt J. N. Proc. Natl. Acad. Sci. U. S. A. 2021;118:14–18. doi: 10.1073/pnas.2107939118. PubMed DOI PMC
Sarhangi S. M. Matyushov D. V. J. Phys. Chem. B. 2022;126:3000–3011. doi: 10.1021/acs.jpcb.2c00338. PubMed DOI
Romero-Muñiz C. Ortega M. Vilhena J. G. Díez-Pérez I. Pérez R. Cuevas J. C. Zotti L. A. J. Phys. Chem. C. 2021;125(3):1693–1702. doi: 10.1021/acs.jpcc.0c09364. DOI
Futera Z. Ide I. Kayser B. Garg K. Jiang X. Van Wonderen J. H. Butt J. N. Ishii H. Pecht I. Sheves M. Cahen D. Blumberger J. J. Phys. Chem. Lett. 2020;11:9766–9774. doi: 10.1021/acs.jpclett.0c02686. PubMed DOI PMC
Futera Z. Wu X. Blumberger J. J. Phys. Chem. Lett. 2023;14:445–452. doi: 10.1021/acs.jpclett.2c03361. PubMed DOI
Zwick P. Dulić D. Van Der Zant H. S. J. Mayor M. Nanoscale. 2021;13:15500–15525. doi: 10.1039/D1NR04523G. PubMed DOI PMC
Hines T. Diez-Perez I. Hihath J. Liu H. Wang Z. S. Zhao J. Zhou G. Müllen K. Tao N. J. Am. Chem. Soc. 2010;132:11658–11664. doi: 10.1021/ja1040946. PubMed DOI